当前位置: 首页 > news >正文

OpenCV实战 -- 维生素药片的检测记数

文章目录

  • 检测记数
    • 原图
    • 经过操作
    • 开始进行消除粘连性--形态学变换
    • 总结实现方法
      • 1. 读取图片:
      • 2. 形态学处理:
      • 3. 二值化:
      • 4. 提取轮廓:
      • 5. 轮廓筛选和计数:
    • 分水岭算法:
      • 逐行解释
      • 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数

检测记数

原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找
在这里插入图片描述

原图

在这里插入图片描述

import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))

在这里插入图片描述

经过操作

发现其具有粘连性,所以阈值分割、形态学变换等图像处理
在这里插入图片描述

开始进行消除粘连性–形态学变换

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))

在这里插入图片描述

总结实现方法

1. 读取图片:

import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)

2. 形态学处理:

import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)

3. 二值化:

import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)

4. 提取轮廓:

import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)

5. 轮廓筛选和计数:

import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)

分水岭算法:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逐行解释

当然,让我们逐行解释上述代码:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
  • 导入OpenCV库和NumPy库。
  • 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
  • 定义一个3x3的矩形内核(kernel)。
  • 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
  • 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
  • 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
  • 对灰度图进行自适应阈值二值化,使用OTSU算法。
  • 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  • 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
  • 初始化药片计数为0。
  • 遍历所有找到的轮廓。
    • 如果轮廓的面积小于500,则跳过。
    • 获取轮廓的位置信息(矩形边界框)。
    • 在原图上绘制矩形,标记检测到的药片。
    • 在矩形位置写上计数。
    • 计数加1。
  • 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 等待用户按下任意按键,然后关闭所有打开的窗口。

在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

  1. 距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。

    dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3)
    
  2. 归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。

    normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX)
    
  3. 再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。

    _, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
    

这样,sure_fg 中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。

相关文章:

OpenCV实战 -- 维生素药片的检测记数

文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片&#xff1a;2. 形态学处理&#xff1a;3. 二值化&#xff1a;4. 提取轮廓&#xff1a;5. 轮廓筛选和计数&#xff1a; 分水岭算法&#xff1a;逐行解释在基于距离变换的分水岭算法中&…...

【AI】注意力机制与深度学习模型

目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽&#xff1a; 2.2 真正意义的注意力机制&#xff1a; 2.3 2015 年及以后&#xff1a; 2.4 自注意力与 Transformer&#xff1a; 2.5 BERT 与预训练模型&#xff1a; 三、基本框架 1. 打分函数&#xff08;Score Fun…...

HTML5和JS实现新年礼花效果

HTML5和JS实现新年礼花效果 2023兔年再见&#xff0c;2024龙年来临了&#xff01; 祝愿读者朋友们在2024年里&#xff0c;身体健康&#xff0c;心灵愉悦&#xff0c;梦想成真。 下面是用HTML5和JS实现新年礼花效果&#xff1a; 源码如下&#xff1a; <!DOCTYPE html>…...

【owt-server】一些构建项目梳理

【owt-server】清理日志&#xff1a;owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...

Linux shell编程学习笔记38:history命令

目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history&#xff1a;显示命令历史列表2.2 history -a&#xff1a;将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c&#xf…...

elasticsearch安装教程(超详细)

1.1 创建网络&#xff08;单点部署&#xff09; 因为我们还需要部署 kibana 容器&#xff0c;因此需要让 es 和 kibana 容器互联&#xff0c;所有先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch&#xff1b;…...

arkts中@Watch监听的使用

概述 Watch用于监听状态变量的变化&#xff0c;当状态变量变化时&#xff0c;Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等&#xff08;&#xff09;&#xff0c;遵循严格相等规范。当在严格相等为false的情况下&#xff0c;就会触发Watch的…...

【Jmeter】Jmeter基础9-BeanShell介绍

3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中&#xff0c;除了配置元件&#xff0c;其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...

详解数组的轮转

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…...

html 表格 笔记

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>第二个页面</title><meta name"language" content"cn"> </head> <body><h2 sytle"width:500px;…...

计算机网络【HTTP 面试题】

HTTP的请求报文结构和响应报文结构 HTTP请求报文主要由请求行、请求头、空行、请求正文&#xff08;Get请求没有请求正文&#xff09;4部分组成。 1、请求行 由三部分组成&#xff0c;分别为&#xff1a;请求方法、URL以及协议版本&#xff0c;之间由空格分隔&#xff1b;请…...

linux基于用户身份对资源访问进行控制的解析及过程

linux中用户分为三类 1.超级用户&#xff08;root&#xff09; 拥有至高无上的权限 2.普通用户 人为创建、权限小&#xff0c;权限受到控制 3.程序用户 运行程序的用户&#xff0c;不是给人使用的&#xff0c;给程序使用的&#xff0c;一般不给登录&#xff01; 组账…...

手动创建idea SpringBoot 项目

步骤一&#xff1a; 步骤二&#xff1a; 选择Spring initializer -> Project SDK 选择自己的JDK版本 ->Next 步骤三&#xff1a; Maven POM ->Next 步骤四&#xff1a; 根据JDK版本选择Spring Boot版本 11版本及以上JDK建议选用3.2版本&#xff0c;JDK为11版本…...

【Go语言入门:Go语言的数据结构】

文章目录 3.Go语言的数据结构&#xff1a;3.1. 指针3.2. struct&#xff08;结构体&#xff09;3.3. Map(映射,哈希&#xff09; 3.Go语言的数据结构&#xff1a; 简介&#xff1a; 在Go语言中&#xff0c;数据结构体可以分为四种类型&#xff1a;基础类型、聚合类型、引用类型…...

QT designer的ui文件转py文件之后,实现pycharm中运行以方便修改逻辑,即添加实时模板框架

为PyCharm中的实时模板&#xff0c;你需要遵循以下步骤&#xff1a; 打开PyCharm的设置: 选择 File > Settings&#xff08;在macOS上是 PyCharm > Preferences&#xff09;。 导航到实时模板: 在设置中找到 Editor > Live Templates。 添加新的模板组 (可选): 为了…...

什么是负载均衡?

负载均衡是指在计算机网络领域中&#xff0c;将客户端请求分配到多台服务器上以实现带宽资源共享、优化资源利用率和提高系统性能的技术。负载均衡可以帮助小云有效解决单个服务器容量不足或性能瓶颈的问题&#xff0c;小云通过平衡流量负载&#xff0c;使得多台服务器能够共同…...

Python和Java的优缺点

Python的优点&#xff1a; 简单易学&#xff1a;Python的语法简洁清晰&#xff0c;易于学习和理解。丰富的库和框架&#xff1a;Python拥有庞大的标准库和活跃的开源社区&#xff0c;可以快速使用各种功能强大的库和框架&#xff0c;比如NumPy、Pandas、Django等。可读性强&am…...

AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)

文章目录 AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)概述增加2个封装函数的AES库aes.haes.c在官方测试程序上改的测试程序(用来测试这2个封装函数)END AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密) 概述 在github山有个星数很高的AES的C库 tiny-AES-c …...

51和32单片机读取FSR薄膜压力传感器压力变化

文章目录 简介线性电压转换模块51单片机读取DO接线方式51代码实验效果 32单片机读取AO接线方式32代码实验效果 总结 简介 FSR薄膜压力传感器是可以将压力变化转换为电阻变化的一种传感器&#xff0c;单片机可以读取然后作为粗略测量压力&#xff08;仅提供压力变化&#xff0c;…...

【maven】pom.xml 文件详解

有关 maven 其他配置讲解参考 maven 配置文件 setting.xml 详解 pom.xml 文件是 Maven 项目的核心配置文件&#xff0c;其中包含了项目的元数据、构建配置、依赖管理等信息。以下是一个 pom.xml 文件的主要部分&#xff1a; <?xml version"1.0" encoding"U…...

SpringMVC源码解析——DispatcherServlet初始化

在Spring中&#xff0c;ContextLoaderListener只是辅助功能&#xff0c;用于创建WebApplicationContext类型的实例&#xff0c;而真正的逻辑实现其实是在DispatcherServlet中进行的&#xff0c;DispatcherServlet是实现Servlet接口的实现类。Servlet是一个JAVA编写的程序&#…...

搞定Apache Superset

踩雷了无数次终于解决了Superset的一系列问题 现在是北京时间2023年12月27日&#xff0c;亲测有效。 Superset概述 Apache Superset是一个现代的数据探索和可视化平台。它功能强大且十分易用&#xff0c;可对接各种数据源&#xff0c;包括很多现代的大数据分析引擎&#xff…...

【每日试题】java面试之ssm框架

以下是20道常见的SSM&#xff08;SpringSpring MVCMyBatis&#xff09;面试题目和答案&#xff1a; 什么是SSM框架&#xff1f; SSM是指SpringSpring MVCMyBatis的组合&#xff0c;它是Java Web开发中常用的轻量级框架集合。 介绍一下SSM框架各个组件的作用&#xff1f; Sprin…...

Flutter 疑难杂症集合

一. Flutter集成uni小程序sdk 1. 手机连接电脑测试打开uni小程序没问题&#xff0c;打包成apk后debug编译下的apk也没问题&#xff0c;但就是release编译的apk包打不开小程序。 报错情景&#xff1a;点击后页面会闪现一下黑色的背景&#xff0c;然后又跳转回了点击之前的页面。…...

PHP序列化总结1--序列化和反序列化的基础知识

序列化和反序列化的作用 1.序列化&#xff1a;将对象转化成数组或者字符串的形式 2.反序列化&#xff1a;将数组或字符串的形式转化为对象 为什么要进行序列化 这种数据形式中间会有很多空格&#xff0c;不同人有不同的书写情况&#xff0c;可能还会出现换行的情况 为此为了…...

【Linux】 last 命令使用

last 命令 用于检索和展示系统中用户的登录信息。它从/var/log/wtmp文件中读取记录&#xff0c;并将登录信息按时间顺序列出。 著者 Miquel van Smoorenburg 语法 last [-R] [-num] [ -n num ] [-adiox] [ -f file ] [name...] [tty...]last 命令 -Linux手册页 选项及作用…...

Git 分布式版本控制系统(序章1)

第一章 Git 分布式版本控制系统 为什么学Git? 某些企业面试需要掌握Git&#xff0c;同时&#xff0c;也方便管理自己的Qt项目。 一、Git 客户端下载&#xff08;Windows&#xff09; 下载地址 https://gitee.com/all-about-git#git-%E5%A4%A7%E5%85%A8 二、Git 的特点 分支…...

给WordPress网站添加返回顶部按钮

给WordPress网站底部添加一个按钮&#xff0c;点它就可以现实快速返回到顶部。有两种方法可以现实&#xff0c;一种是通过安装相关插件来实现。另外一种方式就是以纯属代码的方式来实现。 给WordPress网站底部添加一个按钮&#xff0c;点它就可以现实快速返回到顶部。有两种方…...

App Inventor 2 接入短信服务,实现短信验证码功能

发送短信验证码功能一般都是基于短信平台提供的sdk进行调用&#xff0c;这里是基于阿里云短信平台进行的开发&#xff0c;阿里云短信平台接入步骤请点此参考。 App Inventor 2拓展提供的函数如下&#xff1a; 主要提供2个函数&#xff0c;生成随机位数的数字随机码 和 发送短信…...

Linux环境grep搜索方法记录

1 grep grep 命令&#xff0c;用来搜索字符串所在位置&#xff0c;可以具体到不同文件&#xff0c;不同行&#xff1b; 在Linux 下&#xff0c;查看命令释义如下 zhaocubuntu2004:~$ grep --help Usage: grep [OPTION]... PATTERNS [FILE]... Search for PATTERNS in each FI…...

贵阳好的网站建设公司/网站如何做优化推广

【木头Cocos2d-x】Lua篇&#xff08;第03章&#xff09;&#xff1a;简单解析Lua的堆栈 上一章传送门&#xff1a;http://blog.csdn.net/musicvs/article/details/8440919 经过上一章的讲解&#xff0c;相信大家也看到了&#xff0c;Lua的堆栈是很重要不可或缺的&#xff0c;就…...

做翻译 网站/百度网站网址是多少

KD302 成本中心 CTR xxx/xxxx, 成本要素 4210000: 不能划分 (2013-03-05 11:11:17) 转载▼ 标签&#xff1a; it 分类&#xff1a; SAP 都什么年代了&#xff0c;版本都ehp6了还有这个BUG啊。。。 成本中心 CTR xxx/xxxx, 成本要素 4210000: 不能划分 消息号 KD302 诊断 …...

建网站的公司广州排名/企业培训系统app

nginx代理天地图做缓存解决跨域问题参考文章&#xff1a; &#xff08;1&#xff09;nginx代理天地图做缓存解决跨域问题 &#xff08;2&#xff09;https://www.cnblogs.com/zhang90030/p/9429649.html 备忘一下。...

网站托管解决方案/seo搜索如何优化

请创建一个一维整型数组用来存储待排序关键码&#xff0c;关键码从数组下标为1的位置开始存储&#xff0c;下标为0的位置不存储关键码。输入关键码的个数&#xff0c;以及各个关键码&#xff0c;采用希尔排序的方法对关键码数组进行排序&#xff0c;输出每轮比较的过程。 输入描…...

wordpress插件开发教程/提升关键词

让我们先由2个问题引出今天的话题&#xff0c;第一&#xff0c;为什么选择做测试&#xff1f;第二&#xff0c;做测试的发展又如何&#xff1f;第一个问题&#xff0c;你为什么要选择做测试&#xff0c;我敢说十个人有九个不会说实话&#xff0c;什么测试能够让我开阔视野啦&am…...

win7做网站服务器卡/免费引流微信推广

题目链接&#xff1a;https://cn.vjudge.net/contest/208908#problem/F 题目大意&#xff1a;给你100个方格&#xff0c;编号为1到100&#xff0c;每次你丢一次骰子&#xff0c;决定你下次往前走多少步&#xff0c;有些方格会有一些梯子或者蛇&#xff0c;使得你到该格子时直接…...