「Kafka」生产者篇
「Kafka」生产者篇
生产者发送消息流程
在消息发送的过程中,涉及到了 两个线程
——main 线程
和Sender 线程
。
在 main 线程中创建了 一个 双端队列 RecordAccumulator
。
main线程将消息发送给RecordAccumulator,Sender线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。
- main线程创建 Producer 对象,调用 send 函数发送消息,经过:
- 拦截器 Interceptors(可选项,扩展一些额外功能)
- 序列化器 Serializer(为什么不用Java的序列化?因为大数据传输需要更轻量的序列化方式)
- 分区器 Partitioner,需要判断发送到哪个分区
- 一个分区就会创建一个双端队列 RecordAccumulator,创建队列都是在
内存
里完成的,总大小默认为32m
。- 双端队列 RecordAccumulator 还有一个
内存池
的概念,每次 send 数据到队列后,在存放数据的时候会从内存池中取出内存,数据发送到kafka后释放内存归还到内存池;一端创建内存,另一端释放内存,这也是它为什么设计为双端队列。
- 双端队列 RecordAccumulator 还有一个
- Sender线程从队列中拉取数据
- 每次批处理
batch.size
的大小默认为16k
,延迟时间linger.ms
默认为0ms
,没有延迟。- 这两个条件是 或 的关系,两个条件达到任意一个就可以发送数据。
- 以节点的方式,
key:value => Broker1:(队列数据...)
的格式发送给对应的 kafka 服务器,如果kafka没有应答,默认每个broker节点队列最多缓存 5 个请求,后续 生产经验—数据乱序 的章节会讲这个作用。
- 每次批处理
- Selector负责打通底层的链路,IO输入流 => IO输出流,经过Selector发送到kafka集群,kafka集群进行副本的同步。
- 如果kafka集群收到数据后,会返回 ack,有3种模式,如上图。
- 如果ack返回成功,则先清理掉缓存的Request请求,然后清理到对应队列中的数据。
- 如果ack返回失败,则进行 retries 重试,默认重试次数是int的最大值(死磕),一直发Request请求,直到重试成功。
- 详细讲解请参考下文的 生产经验—数据可靠性。
生产者重要参数列表
异步发送
- 同步发送:外部数据发送到 RecordAccumulator 队列中,等待这批数据都发送到 kafka 集群,再返回。
- 异步发送:外部数据发送到 RecordAccumulator 队列中,不管这些数据有没有发送到 kafka 集群,直接返回。
- 默认为异步发送
普通异步发送
编写不带回调函数的代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;public class CustomProducer {public static void main(String[] args) throws InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 这里只指定了topic和valuekafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i));}// 5. 关闭资源kafkaProducer.close();}
}
回调异步发送
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception)。
如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {// 添加回调 CallbackkafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i), new Callback() {// 该方法在 Producer 收到 ack 时调用,为异步调用@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {// 没有异常,输出信息到控制台System.out.println("主题:" + metadata.topic() + "->" +"分区:" + metadata.partition());} else {// 出现异常打印exception.printStackTrace();}}});// 延迟一会会看到数据发往不同分区Thread.sleep(2);
}
同步发送
只需在异步发送的基础上,再调用一下 get()
方法即可。
生产者分区
分区好处
可以通过机器的存储能力自定义分区数据,比如 broker0 存储 20T 数据,broker1和2分别存储 40T 数据。
生产者发送消息的分区策略
可阅读:详解Kafka分区机制原理|Kafka 系列 二
默认的分区器 DefaultPartitioner
/*** The default partitioning strategy: 默认分区策略* 如果你指定了分区,则直接用这个分区* 如果没指定分区,但有key,则按照key的hash值 % 分区数* 如果既没指定分区也没指定key,则按照粘性分区处理。* See KIP-480 for details about sticky partitioning.*/
public class DefaultPartitioner implements Partitioner {...
}
ProducerRecord 类的构造方法就表示了这 3 种分区策略:
自定义分区器
-
定义类实现
Partitioner
接口 -
重写
partition()
方法import org.apache.kafka.clients.producer.Partitioner; import org.apache.kafka.common.Cluster; import java.util.Map;/*** 1. 实现接口 Partitioner* 2. 实现3个方法: partition、close、configure* 3. 编写 partition 方法,返回分区号*/ public class MyPartitioner implements Partitioner {/*** 返回信息对应的分区* @param topic 主题* @param key 消息的 key* @param keyBytes 消息的 key 序列化后的字节数组* @param value 消息的 value* @param valueBytes 消息的 value 序列化后的字节数组* @param cluster 集群元数据可以查看分区信息* @return*/@Overridepublic int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {// 获取消息String msgValue = value.toString();// 创建 partitionint partition;// 判断消息是否包含 atguiguif (msgValue.contains("atguigu")) {partition = 0;} else {partition = 1;}// 返回分区号return partition;}// 关闭资源@Overridepublic void close() {}// 配置方法@Overridepublic void configure(Map<String, ?> configs) {} }
-
使用分区器的方法,在生产者的配置中添加分区器参数
import org.apache.kafka.clients.producer.*; import org.apache.kafka.common.serialization.StringSerializer; import java.util.Properties;public class CustomProducerCallbackPartitions {public static void main(String[] args) {Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 添加自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.atguigu.kafka.producer.MyPartitioner");KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);for (int i = 0; i < 5; i++) {kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception e) {if (e == null) {System.out.println("主题:" + metadata.topic() + "->" +"分区:" + metadata.partition());} else {e.printStackTrace();}}});}kafkaProducer.close();} }
生产者如何提高吞吐量
- 合理调整
batch.size
和linger.ms
的参数值 - 采用数据压缩
- 调整缓冲区大小
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;public class CustomProducerParameters {public static void main(String[] args) {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// batch.size:批次大小,默认 16Kproperties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);// linger.ms:等待时间,默认 0msproperties.put(ProducerConfig.LINGER_MS_CONFIG, 1);// RecordAccumulator:缓冲区大小,默认 32M:buffer.memoryproperties.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);// compression.type:压缩,默认 none,可配置值 gzip、snappy、lz4 和 zstdproperties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "snappy");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i));}// 5. 关闭资源kafkaProducer.close();}
}
生产经验—数据可靠性
回顾发送流程
数据可靠性主要根据 kafka 集群返回给我们的 ack
。
ack 应答原理
- ack=0,不需要等待数据落盘应答,一直发送给 kafka,很容易丢数据。
- 数据发送到 Leader 后,Leader 挂掉了,此时数据还在内存中,未落盘,数据丢失。
- ack=1,不需要等待 kafka 主从同步完成,Leader 收到数据落盘后应答。
- Leader 成功落盘,但还未同步给 Follower,Leader 挂了,数据丢失。
- ack=-1,需要等待 Leader 和 ISR 队列里面的所有节点收齐数据后应答。
数据完全可靠条件
数据完全可靠条件 = ACK 级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2
注意,这里的“副本”并不是指的 Follower;在 Kafka 中,副本分为 Leader 副本和 Follower 副本。Leader 副本负责处理消息,而 Follower 副本则简单地复制 Leader 副本的数据。
也就是一个分区至少要有 1 个 Leader 和 1 个 Follower,ISR 队列最少也要有 1 个 Leader 和 1 个 Follower。
一个分区至少有 1 个 Leader,所以每个 Partition 都会有一个 ISR,而且是由 Leader 动态维护。
可靠性总结
- acks=0,生产者发送过来数据就不管了,可靠性差,效率高;
- acks=1,生产者发送过来数据 Leader 应答,可靠性中等,效率中等;
- acks=-1,生产者发送过来数据 Leader 和 ISR 队列里面所有 Follwer 应答,可靠性高,效率低;
- 在生产环境中,
- acks=0,很少使用;
- acks=1,一般用于传输普通日志,允许丢个别数据;
- acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。
代码实现
// 设置 acks=-1
properties.put(ProducerConfig.ACKS_CONFIG, "all");
// 重试次数 retries,默认是 int 最大值,2147483647
properties.put(ProducerConfig.RETRIES_CONFIG, 3);
拓展:
生产者将数据发送给 Leader,并且完成同步给 Follower,此时回复 ack 时,Leader 挂了,kafka 会挑一个 Follower 成为新的 Leader,因为生产者没有收到 ack,此时就会认为他的数据没有发送到 kafka,就会进行重试,导致新 Leader 重复接收了两份数据。
生产经验—数据去重
数据传递语义
幂等性
幂等性原理
如何使用幂等性
开启参数 enable.idempotence
,默认为 true
(默认开启)。
生产者事务
幂等性只能保证单分区单会话的不重复,一旦 kafka 挂掉重启,还是有可能产生重复数据。如果想完全去重,就必须使用事务。
Kafka 事务原理
- 幂等性:如果 kafka 挂掉重启,会重新生成一个 PID,所以可能会有重复。
- 事务:kafka 根据全局唯一的
transactional.id
会划分到50个分区中的某一个分区,这些分区的信息是存储在一个特殊 Topic 里的,而 Topic 的底层就是硬盘,所以即使客户端挂掉了,重启后也能继续处理未完成的事务,因为有transactional.id
存在。
Kafka 的事务一共有如下 5 个 API:
// 1. 初始化事务
void initTransactions();// 2. 开启事务
void beginTransaction() throws ProducerFencedException;// 3. 在事务内提交已经消费的偏移量(主要用于消费者)
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets, String consumerGroupId) throws ProducerFencedException;// 4. 提交事务
void commitTransaction() throws ProducerFencedException;// 5. 放弃事务(类似于回滚事务的操作)
void abortTransaction() throws ProducerFencedException;
单个 Producer,使用事务保证消息的仅一次发送:
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;public class CustomProducerTransactions {public static void main(String[] args) {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 设置事务 id(必须),事务 id 任意起名,要求全局唯一properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "transaction_id_0");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);// 初始化事务kafkaProducer.initTransactions();// 开启事务kafkaProducer.beginTransaction();try {// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 发送消息kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i));}// int i = 1 / 0;// 提交事务kafkaProducer.commitTransaction();} catch (Exception e) {// 终止事务kafkaProducer.abortTransaction();} finally {// 5. 关闭资源kafkaProducer.close();}}
}
生产经验—数据有序
仅能保证单分区内有序,如果想保证全局有序,只能把所有分区的消息都拉到消费者端,进行一个全排序,再进行消费。
但需要等所有数据到齐了再进行排序,效率可能还不如单分区。
生产经验—数据乱序
一个 broker 可以有一个 broker 缓存队列,队列中存放的是还未收到 ack 的请求,最多能存放 5 个。
比如发送 Request1 后,对方没有应答,此时还可以发送 Request2、Request3、Request4、Request5,最多能发送 5 次请求。
假设在一个分区中,生产者发送了 Request1、Request2 请求都成功了,但 Request3 请求发送失败了,进行重试,但此时 Request4 请求发送成功了,然后 Request3 请求才发送成功,此时到达 kafka 的顺序就为 1 2 4 3,是乱序的。
- kafka在1.x版本之前保证数据单分区有序,条件如下:
max.in.flight.requests.per.connection=1
(不需要考虑是否开启幂等性)。- 也就是 broker 的缓存队列只允许有 1 个请求,这个请求收到 ack 后才能发送下一个。
- kafka在1.x及以后版本保证数据单分区有序,条件如下:
- 开启幂等性
max.in.flight.requests.per.connection
需要设置小于等于5
。
- 未开启幂等性
max.in.flight.requests.per.connection
需要设置为1
(和kafka在1.x版本之前一样)。
- 开启幂等性
原因说明:因为在 kafka1.x 以后,启用幂等后,kafka 服务端最多会缓存 producer
发来的最近 5
个 request
的元数据。
故无论如何,都可以保证最近 5
个 request
的数据都是有序的。
- 比如先来的 Request1、Request2,服务端根据
SeqNumber
判断数据是否是单调递增的,如果符合则直接进行落盘; - 但下一个请求是 Request4,正常应该是 Request3,所以 Request4 这个请求只能在内存中放着,不能进行落盘;
- 再下一个是 Request5,同样不能进行落盘;
- 直到 Request3 来了,然后对他们进行排序,然后再依次落盘 Request3、Request4、Request5。
笔记整理自b站尚硅谷视频教程:【尚硅谷】Kafka3.x教程(从入门到调优,深入全面)
相关文章:

「Kafka」生产者篇
「Kafka」生产者篇 生产者发送消息流程 在消息发送的过程中,涉及到了 两个线程 ——main 线程和Sender 线程。 在 main 线程中创建了 一个 双端队列 RecordAccumulator。 main线程将消息发送给RecordAccumulator,Sender线程不断从 RecordAccumulator…...

C语言实现RSA算法加解密
使用c语言实现了RSA加解密算法,可以加解密文件和字符串。 rsa算法原理 选择两个大素数p和q;计算n p * q;计算φ(n)(p-1)(q-1);选择与φ(n)互素的整数d;由de1 mod φ(n)计算得到e;公钥是(e, n), 私钥是(d, n);假设明…...
如何设计前后端分离的系统架构?
如何将前端页面和后端Java代码进行集成? 将前端页面和后端Java代码进行集成通常需要使用一些特定的工具和技术。以下是一些常见的方法: 使用RESTful API:REST(Representational State Transfer)是一种基于HTTP协议构…...
【强化学习】SARAS代码实现
前言 SARAS,假设环境状态和动作状态都是离散的。利用动作价值矩阵来进行行为的预测。其主要就是利用时序差分的思想,对动作价值矩阵进行更新。 代码实现 import gymnasium as gym import numpy as npclass sarsa():def __init__(self, states_n, acti…...

P1019 [NOIP2000 提高组] 单词接龙 刷题笔记
P1019 [NOIP2000 提高组] 单词接龙 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路来自 大佬 Chardo 的个人中心 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 匹配 : 将 第一个字符串末尾 和第二个字符串第一个开始匹配 如果 j<i这段走完了 flag还没…...

如何实现WinApp的UI自动化测试?
WinApp(WindowsAPP)是运行在Windows操作系统上的应用程序,通常会提供一个可视的界面,用于和用户交互。例如运行在Windows系统上的Microsoft Office、PyCharm、Visual Studio Code、Chrome,都属于WinApp。常见的WinApp&…...
chrome扩展程序开发之在目标页面运行自己的JS
原文地址:https://qdgithub.com/home/index/article/aid/247.html chrome 插件开发的入门介绍,实现利用 chrome 扩展实现在目标网页运行我们的 js 的功能。关于 chrome 扩展的详细内容,可以通过官网了解。 开发工具很简单,记事本…...
NLP项目之语种识别
目录 1. 代码及解读2. 知识点n-grams仅保留最常见的1000个n-grams。意思是n1000 ? 1. 代码及解读 in_f open(data.csv) lines in_f.readlines() in_f.close() dataset [(line.strip()[:-3], line.strip()[-2:]) for line in lines] print(dataset[:5])[(1 december wereld…...
Linux lpr命令教程:如何使用lpr命令打印文件(附案例详解和注意事项)
Linux lpr命令介绍 lpr命令在Unix-like操作系统中用于提交打印任务。如果在命令行中指定了文件名,那么这些文件将被发送到指定的打印机(如果没有指定目的地,则发送到默认目的地)。如果命令行中没有列出文件,lpr将从标…...
浅谈C语言inline关键字
对于C开发者来说,inline是个再熟悉不过的关键字,因为默认的成员函数都是inline,也是常规高校教材中宣扬C的“优势”之一。 但是C语言其实也是支持inline关键字的,而且是很早期的gcc就支持了该关键字。在Linux0.12版本内核代码中也…...

Flink1.17实战教程(第六篇:容错机制)
系列文章目录 Flink1.17实战教程(第一篇:概念、部署、架构) Flink1.17实战教程(第二篇:DataStream API) Flink1.17实战教程(第三篇:时间和窗口) Flink1.17实战教程&…...

OpenCV实战 -- 维生素药片的检测记数
文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片:2. 形态学处理:3. 二值化:4. 提取轮廓:5. 轮廓筛选和计数: 分水岭算法:逐行解释在基于距离变换的分水岭算法中&…...
【AI】注意力机制与深度学习模型
目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽: 2.2 真正意义的注意力机制: 2.3 2015 年及以后: 2.4 自注意力与 Transformer: 2.5 BERT 与预训练模型: 三、基本框架 1. 打分函数(Score Fun…...

HTML5和JS实现新年礼花效果
HTML5和JS实现新年礼花效果 2023兔年再见,2024龙年来临了! 祝愿读者朋友们在2024年里,身体健康,心灵愉悦,梦想成真。 下面是用HTML5和JS实现新年礼花效果: 源码如下: <!DOCTYPE html>…...

【owt-server】一些构建项目梳理
【owt-server】清理日志:owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...

Linux shell编程学习笔记38:history命令
目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history:显示命令历史列表2.2 history -a:将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c…...

elasticsearch安装教程(超详细)
1.1 创建网络(单点部署) 因为我们还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联,所有先创建一个网络: docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch;…...

arkts中@Watch监听的使用
概述 Watch用于监听状态变量的变化,当状态变量变化时,Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等(),遵循严格相等规范。当在严格相等为false的情况下,就会触发Watch的…...

【Jmeter】Jmeter基础9-BeanShell介绍
3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中,除了配置元件,其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...

详解数组的轮转
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...