朴素贝叶斯法学习笔记
频率派和贝叶斯派
频率派认为可以通过大量实验,从样本推断总体。比如假定总体服从均值为μ\muμ,方差为σ\sigmaσ的分布。根据中心极限定理,是可以通过抽样估算总体的参数的,而且抽样次数越多,对总体的估计就越准确。需要指出的是,频率派的观点认为μ\muμ和σ\sigmaσ都是固定,就是说他们都是某个确定的值。
但实际上,实验次数越多,成本就越高,而且很多时候是没有办法进行多次试验的。这时候,频率派对总体参数的估计就会存在较大偏差。
贝叶斯派则认为,可以先对总体的参数进行粗略估计(先验概率),然后根据实验结果不断调整参数的估计值(后验概率)。而且,贝叶斯派认为参数并不是固定的,而是服从某个概率分布的值。
朴素贝叶斯法
独立同分布假设
假设训练数据集T=(x1,y1),(x2,y2),...,(xn,yn)T={(x_1,y_1) ,(x_2,y_2),...,(x_n,y_n)}T=(x1,y1),(x2,y2),...,(xn,yn),可以理解为每个xxx都代表了一个完整的case。比如x1x_1x1可以用x1(1)x_1^{(1)}x1(1)来表示第一个样本的第1个特征,而一个样本可以有多个特征,比如x1(k)x_1^{(k)}x1(k)就表示第1个样本的第kkk个特征;而y1y_1y1就表示这个x1x_1x1这个case所属的类。
书上还有一句话,训练集是独立同分布的。也就是说所使用的到的样本都是从同一个总体中拿出来的,自然就服从同一个分布;如果不服从同分布,也就意味着我们无法得到最终的模型,我们只能根据不同的case得到不同的模型。独立就是说各样本之间互不影响,得到什么样的yyy值,只要看自己有什么样的xxx就可以了,x1x_1x1不用去管x2x_2x2的y2y_2y2值是怎么得到的。
学习过程
朴素贝叶斯法的最终目的是通过训练集学习xxx和yyy的联合概率分布P(X,Y)P(X,Y)P(X,Y)。这样当我们知道某个测试样本的XXX,我们就可以根据联合概率分布求出YYY的概率分布。然后我们看哪个YYY能够让P(X,Y)P(X,Y)P(X,Y)最大,我们就把这个YYY作为这个测试样本XXX的类别。
我们假设YYY有kkk个不同的取值,也就是说样本一共有kkk类。而我们一共有nnn个特征,Xi(1),Xi(2),...,Xi(n)X_i^{(1)},X_i^{(2)},...,X_i^{(n)}Xi(1),Xi(2),...,Xi(n)。
而为了通过训练集学到联合概率分布P(X,Y)P(X,Y)P(X,Y),我们需要分别学到先验概率分布P(Y=ck)P(Y=c_k)P(Y=ck)以及条件概率分布P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)
这是因为当我们拿到测试数据集的时候,我们面临的问题是求:
P(Y=ck∣X(1)=x(1),X(2)=x(2),...,X(n)=x(n))P(Y=c_k|X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})P(Y=ck∣X(1)=x(1),X(2)=x(2),...,X(n)=x(n))
这是一个条件概率求解,而根据贝叶斯公式,我们知道:
P(A∣B)=P(A)P(B∣A)P(B)P(A|B)=\frac{P(A)P(B|A)}{P(B)}P(A∣B)=P(B)P(A)P(B∣A)
所以上面那个条件概率就等于:
P(Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)), (1)\frac{P(Y=c_k)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)}{P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})} \text{, \tag{1}}P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))P(Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck), (1)
而且我们知道朴素贝叶斯之所以朴素,就是因为这个算法假定各特征都是独立的。也就是说X(1)X^{(1)}X(1)、X(2)X^{(2)}X(2)……X(n)X^{(n)}X(n)的互不影响,没有关系。其实相当于是把问题简单化了。有了这个条件,公式1就可以进一步化简:
P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))=∏i=1nP(X(i)=x(i))P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})=\prod_{i=1}^nP(X^{(i)}=x^{(i)})P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))=i=1∏nP(X(i)=x(i))
P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)=∏i=1nP(X(i)=x(i)∣Y=ck)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)=\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)=i=1∏nP(X(i)=x(i)∣Y=ck)
所以公式1最后就变成了:
f1=P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)∏i=1nP(X(i)=x(i))(2)f_1=\frac{P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)}{\prod_{i=1}^nP(X^{(i)}=x^{(i)})} \text{\tag{2}}f1=∏i=1nP(X(i)=x(i))P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)(2)
我们知道,现在有了样本X(i)=x(i)X^{(i)}=x^{(i)}X(i)=x(i),现在要求的是当f1f_1f1最大的时候,ckc_kck是多少?也就是说现在ckc_kck是未知量,而跟X(i)X^{(i)}X(i)相关的都是由数据集提供的,所以求f1f_1f1的最大值就等价于求f2f_2f2的最大值,二者的最大值不一样(我们也不关心),但取得最大值时的ckc_kck是相等的。
f2=P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)(3)f_2=P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k) \text{\tag{3}}f2=P(Y=ck)i=1∏nP(X(i)=x(i)∣Y=ck)(3)
参数估计
极大似然估计
朴素贝叶斯法意味着我们要估计P(Y=ck)P(Y=c_k)P(Y=ck)以及P(X(i)=x(i)∣Y=ck)P(X^{(i)}=x^{(i)}|Y=c_k)P(X(i)=x(i)∣Y=ck)。
先验概率P(Y=ck)P(Y=c_k)P(Y=ck)的极大似然估计是:
P(Y=ck)=∑i=1nI(yi=ck)N,k=1,2...KP(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)}{N} \text ,k=1,2...KP(Y=ck)=Ni=1∑nI(yi=ck),k=1,2...K
而每个特征X(i)X^{(i)}X(i)都可能有很多个取值,所以假设第iii个特征X(i)X^{(i)}X(i)的可能取值为结合{ai1,ai2...aiSi}\lbrace{a_{i1},a_{i2}...a_{iS_i}}\rbrace{ai1,ai2...aiSi},也就是说我们假设第iii个特征可能的取值SiS_iSi种。
条件概率的极大似然估计是:P(X(i)=ail∣Y=ck)=∑i=1nI(xj(i)=ail,yi=ck)∑i=1nI(yi=ck)P(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)}{\sum\limits_{i=1}^nI(y_i=c_k)}P(X(i)=ail∣Y=ck)=i=1∑nI(yi=ck)i=1∑nI(xj(i)=ail,yi=ck)
上式小标太多,解释一下,xj(i)x^{(i)}_jxj(i)表示第jjj个样本的第iii个特征,aila_{il}ail表示第iii个特征的取值为aila_{il}ail。
III为指示函数,也就是说当括号中的关系成立时,I=1I=1I=1,不成立时,I=0I=0I=0。
所以从这里也可以看出来,这个参数的估计过程就是“数数”。先验概率就是数Y=ckY=c_kY=ck出现多少次,占比多少。条件概率就是数Y=ckY=c_kY=ck的时候,x(i)x^{(i)}x(i)这个特征取aila_{il}ail出现多少次,占比多少。可想而知,这是一项庞大的“数数”工程。
贝叶斯估计
极大似然估计可能会发生一个比较尴尬的事情,比如我们就假设样本的第3个特征X(3)X^{(3)}X(3)在训练集中所有取值为{1,3,5}\lbrace1,3,5\rbrace{1,3,5},但是在测试集中,出现一个新值4。这时,如果按照极大似然法,条件概率P(X(i)=4∣Y=ck)=0P(X^{(i)}=4|Y=c_k)=0P(X(i)=4∣Y=ck)=0(因为训练集没有这个4,所以从训练集学到的条件概率就是0)。而目标函数f2f_2f2是一系列条件概率的累乘,所以最后无论其他特征的条件概率是多少,f2f_2f2恒等于0。
也就意味着学到的这个联合分布,过拟合了,对新出现的数据预测能力极差。
为了避免这一现象,现在需要引入贝叶斯估计,其实也可以理解为正则化的手段。具体的,条件概率的贝叶斯估计是:P(X(i)=ail∣Y=ck)=∑i=1nI(xj(i)=ail,yi=ck)+λ∑i=1nI(yi=ck)+SiλP(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)+\lambda}{\sum\limits_{i=1}^nI(y_i=c_k)+S_i\lambda}P(X(i)=ail∣Y=ck)=i=1∑nI(yi=ck)+Siλi=1∑nI(xj(i)=ail,yi=ck)+λ
上式中,λ≥0\lambda\geq0λ≥0,显而易见,当λ=0\lambda=0λ=0的时候就是极大似然估计。根据习惯,经常取λ=1\lambda=1λ=1,此时称为拉普拉斯平滑。
同样,也为了避免先验概率等于0,同样可以引入贝叶斯估计:P(Y=ck)=∑i=1nI(yi=ck)+λN+KλP(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)+\lambda}{N+K\lambda}P(Y=ck)=N+Kλi=1∑nI(yi=ck)+λ
由于当λ=1\lambda=1λ=1,并且在样本量NNN越来越大的时候,λ\lambdaλ对先验概率和条件概率的影响就会越来越小,甚至忽略不计。这就是所谓的拉普拉斯平滑的思想。
相关文章:
朴素贝叶斯法学习笔记
频率派和贝叶斯派 频率派认为可以通过大量实验,从样本推断总体。比如假定总体服从均值为μ\muμ,方差为σ\sigmaσ的分布。根据中心极限定理,是可以通过抽样估算总体的参数的,而且抽样次数越多,对总体的估计就越准确。…...

vscode与C++安装与使用【不好用来骂我】
网上教程很多,但是都不太好用,这是我垃圾堆里淘金淘出来的教程: 安装软件 安装 Visual Studio Code: 你需要下载并安装 Visual Studio Code,可以在官网下载 https://code.visualstudio.com/download。 安装 C 扩展: 在 Visual S…...
C++11使用多线程(线程池)计算相似度实现性能优化
需求:图像识别中,注册的样本多了会影响计算速度,成为性能瓶颈,其中一个优化方法就是使用多线程。例如,注册了了3000个特征,每个特征4096个float。可以把3000个特征比对放到4个线程中进行计算,然…...

【测绘程序设计】——平面坐标转换
测绘工程中经常遇到平面坐标转换——比如,北京54(或西安80)平面坐标转换成CGCS2000平面坐标、工程独立坐标系平面坐标转换成CGCS2000平面坐标等,常用转换模型包括:①三参数法(2平移+1旋转);②四参数法(赫尔默特法,2平移+1旋转+1尺度);③六参数法(仿射变换法,2平移…...

五子棋的设计与实现
术:Java等摘要:五子棋是一种两人对弈的纯策略型棋类游戏,非常容易上手,老少皆宜。为了更好的推广五子棋,研究简单的人工智能方式,运用Java开发五子棋游戏。主要包含了人机对战,棋盘初始化&#…...
大数据项目软硬件选择
目录 一.技术选型 二.系统数据流程设计 三.框架版本选型 如何选择Apache/CDH/HDP版本...

redis数据结构的适用场景分析
1、String 类型的内存空间消耗问题,以及选择节省内存开销的数据类型的解决方案。 为什么 String 类型内存开销大? 图片 ID 和图片存储对象 ID 都是 10 位数,我们可以用两个 8 字节的 Long 类型表示这两个 ID。因为 8 字节的 Long 类型最大可以…...
同步、异步、全双工、半双工的区别
1、通讯 1.1 并行通讯 定义:一条信息的各位数据被同时传送的通讯方式称为并行通讯; 特点: 各个数据位同时发送,传送速度快、效率高,但有多少数据位就需要多少根数据线,因此传送成本高,并且只…...

ClickHouse 与 Amazon S3 结合?一起来探索其中奥秘
目录ClickHouse 简介ClickHouse 与对象存储ClickHouse 与 S3 结合的三种方法示例参考架构小结参考资料ClickHouse 简介ClickHouse 是一种快速的、开源的、用于联机分析(OLAP)的列式数据库管理系统(DBMS),由俄罗斯的Yan…...

【Spark分布式内存计算框架——Structured Streaming】1. Structured Streaming 概述
前言 Apache Spark在2016年的时候启动了Structured Streaming项目,一个基于Spark SQL的全新流计算引擎Structured Streaming,让用户像编写批处理程序一样简单地编写高性能的流处理程序。 Structured Streaming并不是对Spark Streaming的简单改进…...

【Windows】【Linux】---- Java证书导入
问题: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target 无法找到请求目标的有效证书路径 一、Windows—java证书导入 1、下载证书到本地(以下…...

【Linux学习】菜鸟入门——gcc与g++简要使用
一、gcc/g gcc/g是编译器,gcc是GCC(GUN Compiler Collection,GUN编译器集合)中的C编译器;g是GCC中的C编译器。使用g编译文件时会自动链接STL标准库,而gcc不会自动链接STL标准库。下面简单介绍一下Linux环境下(Windows差…...
Cadence Allegro 导出Bill of Material Report详解
⏪《上一篇》 🏡《总目录》 ⏩《下一篇》 目录 1,概述2,Assigned Functions Report作用3,Assigned Functions Report示例4,Assigned Functions Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频...

localStorage线上问题的思考
一、背景: localStorage作为HTML5 Web Storage的API之一,使用标准的键值对(Key-Value,简称KV)数据类型主要作用是本地存储。本地存储是指将数据按照键值对的方式保存在客户端计算机中,直到用户或者脚本主动清除数据&a…...
什么是DNS域名解析
什么是DNS域名解析?因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。通过主机名,得到该主机名对应的IP地址的过程叫做域名解析。正向解析:…...
Cadence Allegro 导出Assigned Functions Report详解
⏪《上一篇》 🏡《总目录》 ⏩《下一篇》 目录 1,概述2,Assigned Functions Report作用3,Assigned Functions Report示例4,Assigned Functions Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频...

Python中Opencv和PIL.Image读取图片的差异对比
近日,在进行深度学习进行推理的时候,发现不管怎么样都得不出正确的结果,再仔细和正确的代码进行对比了后发现原来是Python中不同的库读取的图片数组是有差异的。 image np.array(Image.open(image_file).convert(RGB)) image cv2.imread(…...

win10 WSL2 使用Ubuntu配置与安装教程
Win10 22H2ubuntu 22.04ROS2 文章目录一、什么是WSL2二、Win10 系统配置2.1 更新Windows版本2.2 Win10系统启用两个功能2.3 Win10开启BIOS/CPU开启虚拟化(VT)(很关键)2.4 下载并安装wsl_update_x64.msi2.5 PowerShell安装组件三、PowerShell安装Ubuntu3.…...
LeetCode每日一题(28. Find the Index of the First Occurrence in a String)
Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. Example 1: Input: haystack “sadbutsad”, needle “sad” Output: 0 Explanation: “sad” occurs at index 0 and…...

Android 圆弧形 SeekBar
效果预览package com.gcssloop.widget;import android.annotation.SuppressLint;import android.content.Context;import android.content.res.TypedArray;import android.graphics.Canvas;import android.graphics.Color;import android.graphics.Matrix;import android.graph…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...