基于文本提示和语义分割的快速抠图
基于文本提示和语义分割的快速抠图
- 1. 介绍
- 2. 效果展示
- 3. 安装模型
- 4. 命令行调用
- 5. 代码调用
- 5.1 模型加载
- 5.2 可视化函数定义
- 5.3 图像语义分割
- 6. 参考资料
- 7. 结语
- 服务
1. 介绍
传统的图像语义分割模型通常固定类别进行分割,而基于文本提示的语义分割模型则具有更高的灵活性。本文介绍的模型允许用户通过输入文本标签来手动控制分割的类别信息,从而实现快速抠图的需求。
2. 效果展示
通过控制文本标签,模型能够快速、精准地抠出特定物体,以下是部分抠图效果展示:

3. 安装模型
使用 PaddleHub 可以便捷地安装该语义分割模型:
!pip install --upgrade paddlenlp
!hub install lseg
4. 命令行调用
通过简单的命令行指令即可快速调用模型进行抠图:
!hub run lseg \--input_path "images/cat.jpeg" \--labels 'cat' 'other' \--output_dir "lseg_output"
文本标签支持中英文,模型会自动翻译至英文输入。
5. 代码调用
5.1 模型加载
import paddlehub as hubmodule = hub.Module(name="lseg")
5.2 可视化函数定义
import cv2
import numpy as np
from PIL import Imagedef vis(results):result = np.concatenate([results['color'], results['mix']], 1)return Image.fromarray(result[:, :, ::-1])
5.3 图像语义分割
# 定义图像路径 / 类别 / 保存路径
image_path = 'images/cat.jpeg'
labels = ['plant', 'grass', 'cat', 'stone', 'other']
output_dir = 'lseg_output'# 图像分割
results = module.segment(image=image_path,labels=labels,visualization=True,output_dir=output_dir
)# 可视化
vis(results)
或者直接使用 numpy.ndarray BGR 格式的图像:
# 定义图像路径 / 类别 / 保存路径
image_path = 'images/cat.jpeg'
labels = ['plant', 'grass', 'cat', 'stone', 'other']
output_dir = 'lseg_output'# 图像分割
results = module.segment(image=cv2.imread(image_path),labels=labels,visualization=True,output_dir=output_dir
)# 可视化
vis(results)
6. 参考资料
- 论文:Language-driven Semantic Segmentation
- 官方实现:isl-org/lang-seg
- AIStudio 介绍:Lang-Seg:文本驱动的图像语义分割
7. 结语
以上是基于文本提示的语义分割快速抠图模型的介绍与实践。希望本文能够对您有所帮助,若有任何疑问或建议,欢迎留言交流!
服务
🛠 博主提供一站式解决方案,让您的工作变得更加轻松、高效!以下是我们提供的服务:
-
代部署
🚀 为您提供快速、稳定的部署方案。无论是您的应用程序、网站还是其他软件项目,我们都可以帮助您将其部署到适当的平台上。
-
课程设计选题
📚 为您量身定制符合课程要求和学生需求的选题方案。无论是基础课程还是高级课程,我们都能够为您提供专业的建议和支持。
-
线上辅导
💻 提供线上辅导服务,为您提供个性化的指导和支持,帮助您解决在学习、工作或研究中遇到的各种问题和困难。
如有需求,请随时私信
相关文章:
基于文本提示和语义分割的快速抠图
基于文本提示和语义分割的快速抠图 1. 介绍2. 效果展示3. 安装模型4. 命令行调用5. 代码调用5.1 模型加载5.2 可视化函数定义5.3 图像语义分割 6. 参考资料7. 结语服务 1. 介绍 传统的图像语义分割模型通常固定类别进行分割,而基于文本提示的语义分割模型则具有更高…...
什么是媒体发稿?发稿媒体分类及发稿流程
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体发稿是一种企业推广和宣传的手段,通过媒体渠道传递企业信息和形象。 媒体发稿的含义在于,当企业有新闻、事件或其他消息需要对外公布时,可以选择…...
安全测试自学手册之软件安全测试基础
安全测试的概念 定义:指有关验证应用程序的安全等级和识别潜在安全性缺陷的过程。】 应用软件的安全性测试:软件自身设计中存在的安全隐患,并检查软件对非法入侵的防御能力。系统级别的安全性测试:确保只有具备系统平台访问权限…...
【LeetCode】升级打怪之路 Day 04:链表 part 2
今日题目: 24. 两两交换链表中的节点19. 删除链表的倒数第 N 个结点160. 相交链表142. 环形链表 II 目录 LeetCode 24. 两两交换链表中的节点 【易错】LeetCode 19. 删除链表的倒数第 N 个结点 【还行】LeetCode 160. 相交链表(两个链表是否相交…...
JAVA编程题系列——涵盖几乎所有java内容
自己定义一个类,有static属性和构造方法,有构造方法重载,有其他方法(方法有对String类型操作) public class MyClass {// 静态属性public static String staticProperty "Static Property";// 成员变量priv…...
【Android12】Monkey压力测试源码执行流程分析
Monkey压力测试源码执行流程分析 Monkey是Android提供的用于应用程序自动化测试、压力测试的测试工具。 其源码路径(Android12)位于 /development/cmds/monkey/部署形式为Java Binary # development/cmds/monkey/Android.bp // Copyright 2008 The Android Open Source Proj…...
Java架构师之路八、安全技术:Web安全、网络安全、系统安全、数据安全等
目录 Web安全: 网络安全: 系统安全: 数据安全: Java架构师之路七、大数据:Hadoop、Spark、Hive、HBase、Kafka等-CSDN博客Java架构师之路九、设计模式:常见的设计模式,如单例模式、工厂模式…...
Codeforces Round 240 (Div. 1) C. Mashmokh and Reverse Operation(分治+逆序对)
原题链接:C. Mashmokh and Reverse Operation 题目大意: 给出一个长度为 2 n 2^{n} 2n 的正整数数组 a a a ,再给出 m m m 次操作。 每次操作给出一个数字 q q q ,把数组分为 2 n − q 2^{n-q} 2n−q 个长度为 2 q 2^{q} 2…...
SpringBoot源码解读与原理分析(三十二)SpringBoot整合JDBC(一)JDBC组件的自动装配
文章目录 前言第10章 SpringBoot整合JDBC10.1 SpringBoot整合JDBC的项目搭建10.1.1 初始化数据库10.1.2 整合项目10.1.2.1 导入JDBC和MySQL驱动依赖10.1.2.2 配置数据源 10.1.3 编写业务代码10.1.3.1 编写与t_user表对应的实体类User10.1.3.2 编写Dao层代码10.1.3.3 编写Servic…...
petalinux_zynq7 驱动DAC以及ADC模块之五:nodejs+vue3实现web网页波形显示
前文: petalinux_zynq7 C语言驱动DAC以及ADC模块之一:建立IPhttps://blog.csdn.net/qq_27158179/article/details/136234296petalinux_zynq7 C语言驱动DAC以及ADC模块之二:petalinuxhttps://blog.csdn.net/qq_27158179/article/details/1362…...
Android java中内部类的使用
一.成员内部类 实验1:成员内部类 class Outer {private int a 10;class Inner {public void printInfo(){System.out.println("a "a);}}}public class InnerDemo {public static void main(String args[]) {Outer o new Outer();Outer.Inner i o.new…...
llm的inference(二)
文章目录 Tokenizer分词1.单词分词法2.单字符分词法3.子词分词法BPE(字节对编码,Byte Pair Encoding)WordPieceUnigram Language Model(ULM) embedding的本质推理时的一些指标参考链接 Tokenizer 在使用模型前,都需要将sequence过一遍Tokenizer…...
pytorch -- torch.nn.Module
基础 torch.nn 是 PyTorch 中用于构建神经网络的模块。nn.Module包含网络各层的定义及forward方法。 在用户自定义神经网络时,需要继承自nn.Module类。通过继承 nn.Module 类,您可以创建自己的神经网络模型,并定义模型的结构和操作。 torch.n…...
Microsoft Edge 越用越慢、超级卡顿?网页B站播放卡顿?
记录10个小妙招 Microsoft Edge 启动缓慢、菜单导航卡顿、浏览响应沉闷?这些情况可能是由于系统资源不足或浏览器没及时更新引起的。接下来,我们将介绍 10 种简单的方法,让 Edge 浏览器的速度重新起飞。 基础检查与问题解决 如果 Microsoft…...
XGB-9: 分类数据
从1.5版本开始,XGBoost Python包为公共测试提供了对分类数据的实验性支持。对于数值数据,切分条件被定义为 v a l u e < t h r e s h o l d value < threshold value<threshold ,而对于分类数据,切分的定义取决于是否使用…...
FreeRTOS学习第8篇--同步和互斥操作引子
目录 FreeRTOS学习第8篇--同步和互斥操作引子同步和互斥概念实现同步和互斥的机制PrintTask_Task任务相关代码片段CalcTask_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第8篇–同步和互斥操作引子 本文目标:学习与使用FreeRTOS中的同步和互斥操…...
c++STL容器的使用(vector, list, map, set等),c++STL算法的理解与使用(sort, find, binary_search等)
cSTL容器的使用(vector, list, map, set等) 在C的STL(Standard Template Library)中,容器是重要的一部分,它们提供了各种数据结构来存储和管理数据。以下是一些常见的STL容器及其使用方法的简要说明&#x…...
选择VR全景行业,需要了解哪些内容?
近年来,随着虚拟现实、增强现实等技术的持续发展,VR全景消费市场得以稳步扩张。其次,元宇宙行业的高速发展,也在进一步拉动VR全景技术的持续进步,带动VR产业的高质量发展。作为一种战略性的新兴产业,国家和…...
830. 单调栈
Problem: 830. 单调栈 文章目录 思路解题方法复杂度Code 思路 这是一个单调栈的问题。单调栈是一种特殊的栈结构,它的特点是栈中的元素保持单调性。在这个问题中,我们需要找到每个元素左边第一个比它小的元素,这就需要使用到单调递增栈。 我们…...
H5 个人引导页官网型源码
H5 个人引导页官网型源码 源码介绍:源码无后台、无数据库,H5自检测适应、无加密,直接修改可用。 源码含有多选项,多功能。可展示自己站点、团队站点。手机电脑双端。 下载地址: https://www.changyouzuhao.cn/1434.…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
