当前位置: 首页 > news >正文

算法简介:查找与算法运行时间

文章目录

  • 1. 二分查找与简单查找
    • 1.1 运行时间
  • 2. 旅行商问题

算法是一组完成任务的指令。任何代码片段都可以视为算法。

1. 二分查找与简单查找

二分查找是一种算法,其输入是一个有序的元素列表,如果要查找的元素包含在列表中,二分查找返回其位置;否则返回NULL。二分查找每次都检查中间的元素。

def binary_search(list, item):
low = 0
high = len(list) - 1
while low <= highmid = (low + high)/2guess = list[mid]if guess == item:return midif guess > item:high = mid - 1else:low = mid + 1
return None 

简单查找即将元素全部遍历。

1.1 运行时间

大O表示法:一种特殊的表示法,指出算法的速度有多块。
大O表示法指的并非以秒为单位的速度。大O表示法让你能够比较操作数,它指出了算法运行时间的增速。

假设有10亿个元素有序排列,需要查找其中的一个元素,没查找一个元素需要消耗1毫秒,则简单查找需要11天左右,二分查找需要30ms。

假设列表有n个元素。

  • 简单查找需要查找每个元素,因此需要执行n次操作,使用大O表示法,这个运行时间为O(n)。
  • 二分查找需要执行log n次操作,使用大O表示为O(log n)。

大O表示法指出了最糟情况下的运行时间。

一些常见的大O运行时间:
O(log n),对数时间,如二分查找
O(n),线性时间,如简单查找
O(n*log n),如快速排序
O(n^2),如选择排序
O(n!),如旅行商问题

  • 算法的速度指的并非时间,而是操作数的增速。、
  • 谈论算法的速度时,我们说的是随着输入的增加,其运行时间将以什么样的速度增加。
  • 算法的运行时间用大O表示法表示。
  • O(log n)比O(n)快,当需要搜索的元素越多时,前者比后者快的越多。

2. 旅行商问题

有一位旅行商。他需要前往5个城市,同时需要确保旅途最短。为此,可考虑前往各个城市的各种可能顺序。
对于每种顺序,他都计算总旅程,再挑选出旅程最短的路径。

  • 5个城市有120钟不同的排列方式。
  • 涉及6个城市时,需要执行720次操作。
  • 涉及7个城市时,需要执行5040次操作。
  • 涉及n个城市时,需要执行n!(n的阶乘)次操作。因此运行时间为O(n!),即阶乘时间。

相关文章:

算法简介:查找与算法运行时间

文章目录 1. 二分查找与简单查找1.1 运行时间 2. 旅行商问题 算法是一组完成任务的指令。任何代码片段都可以视为算法。 1. 二分查找与简单查找 二分查找是一种算法&#xff0c;其输入是一个有序的元素列表&#xff0c;如果要查找的元素包含在列表中&#xff0c;二分查找返回…...

零基础C++开发上位机--基于QT5.15的串口助手(三)

本系列教程本着实践的目的&#xff0c;争取每一节课都带大家做一个小项目&#xff0c;让大家多实践多试验&#xff0c;这样才能知道自己学会与否。 接下来我们这节课&#xff0c;主要学习一下QT的串口编程。做一款自己的串口助手&#xff0c;那么这里默认大家都是具备串口通信…...

Facebook的虚拟社交愿景:元宇宙时代的新起点

在当今数字化时代&#xff0c;社交媒体已经成为人们生活中不可或缺的一部分。而随着科技的不断进步和社会的发展&#xff0c;元宇宙已经成为了人们关注的热点话题之一。作为社交媒体的领军企业之一&#xff0c;Facebook也在积极探索虚拟社交的未来&#xff0c;将其视为元宇宙时…...

【深度学习笔记】4_6 模型的GPU计算

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 4.6 GPU计算 到目前为止&#xff0c;我们一直在使用CPU计算。对复杂的神经网络和大规模的数据来说&#xff0c;使用CPU来计算可能不够…...

留学申请过程中如何合理使用AI?大学招生官怎么看?

我们采访过的学生表示&#xff0c;他们在写essay的过程中会使用 ChatGPT&#xff0c;主要用于以下两个方面&#xff1a;第一&#xff0c;生成想法和头脑风暴&#xff1b;第二&#xff0c;拼写和语法检查。 纽约时报的娜塔莎辛格&#xff08;Natasha Singer&#xff09;在一篇文…...

vue2与vue3的diff算法有什么区别

在 Vue 中&#xff0c;虚拟 DOM 是一种重要的概念&#xff0c;它通过将真实的 DOM 操作转化为对虚拟 DOM 的操作&#xff0c;从而提高应用的性能。Vue 框架在虚拟 DOM 的更新过程中采用了 Diff 算法&#xff0c;用于比较新旧虚拟节点树&#xff0c;找出需要更新的部分&#xff…...

ES小总结

组合查询 FunctionScoreQueryBuilder functionScoreQuery QueryBuilders.functionScoreQuery(boolQuery,new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.termQuery("isAD",true),Score…...

vue2与vue3中父子组件传参的区别

本次主要针对vue中父子组件传参所进行讲解 一、vue2和vue3父传子区别 1.vue2的父传子 1).在父组件子标签中自定义一个属性 <sonPage :子组件接收到的类名"传输的数据">子组件</sonPage> 2).在子组件中peops属性中拿到自定属性 props: {子组件接收的…...

使用vuetify实现全局v-alert消息通知

前排提示&#xff0c;本文为引流文&#xff0c;文章内容不全&#xff0c;更多信息前往&#xff1a;oldmoon.top 查看 简介 使用强大的Vuetify开发前端页面&#xff0c;结果发现官方没有提供简便的全局消息通知组件&#xff08;像Element中的ElMessage那样&#xff09;&#xf…...

CentOS 7.9上编译wireshark 3.6

工作环境是Centos 7.9&#xff0c;原本是通过flathub安装的wireshark&#xff0c;但是在gnome的application installer上升级到wireshark 4.2.3之后就运行不起来了&#xff0c;flatpak run org.wireshark.Wireshark启动提示缺少qt6&#xff0c;查了一下wireshark新版是依赖qt6的…...

初学学习408之数据结构--数据结构基本概念

初学学习408之数据结构我们先来了解一下数据结构的基本概念。 数据结构&#xff1a;是相互之间存在一种或多种特定关系的数据元素的集合。 本内容来源于参考书籍《大话数据结构》与《王道数据结构》。除去书籍中的内容&#xff0c;作为初学者的我会尽力详细直白地介绍数据结构的…...

Java项目中必须使用本地缓存的几种情况

Java项目中必须使用本地缓存的几种情况 在Java项目的开发过程中&#xff0c;为了提高应用的性能和响应速度&#xff0c;缓存机制经常被使用。其中&#xff0c;本地缓存作为一种常见的缓存方式&#xff0c;将数据存储在应用程序的本地内存或磁盘中&#xff0c;以便快速访问。下…...

【鸿蒙 HarmonyOS 4.0】TypeScript开发语言

一、背景 HarmonyOS 应用的主要开发语言是 ArkTS&#xff0c;它由 TypeScript&#xff08;简称TS&#xff09;扩展而来&#xff0c;在继承TypeScript语法的基础上进行了一系列优化&#xff0c;使开发者能够以更简洁、更自然的方式开发应用。值得注意的是&#xff0c;TypeScrip…...

Android java基础_异常

一.异常的概念 在Java中&#xff0c;异常&#xff08;Exception&#xff09;是指程序执行过程中可能出现的不正常情况或错误。它是一个事件&#xff0c;它会干扰程序的正常执行流程&#xff0c;并可能导致程序出现错误或崩溃。 异常在Java中是以对象的形式表示的&#xff0c;…...

高数考研 -- 公式总结(更新中)

1. 两个重要极限 (1) lim ⁡ x → 0 sin ⁡ x x 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}1 limx→0​xsinx​1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}1 limf(x)→0​f(x)sinf(x)​1. (2) lim ⁡…...

详解顺序结构滑动窗口处理算法

&#x1f380;个人主页&#xff1a; https://zhangxiaoshu.blog.csdn.net &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️&#xff0c;如有错误敬请指正! &#x1f495;未来很长&#xff0c;值得我们全力奔赴更美好的生活&…...

Java 8中使用Stream来操作集合

Java 8中使用Stream来操作集合 在Java 8中&#xff0c;你可以使用Stream API来操作集合&#xff0c;这使得集合的处理变得更加简洁和函数式。Stream API提供了一系列的中间操作&#xff08;intermediate operations&#xff09;和终端操作&#xff08;terminal operations&…...

MATLAB环境下一种改进的瞬时频率(IF)估计方法

相对于频率成分单一、周期性强的平稳信号来说&#xff0c;具有非平稳、非周期、非可积特性的非平稳信号更普遍地存在于自然界中。调频信号作为非平稳信号的一种&#xff0c;由于其频率时变、距离分辨率高、截获率低等特性&#xff0c;被广泛应用于雷达、地震勘测等领域。调频信…...

解决:selenium web browser 的版本适配问题

文章目录 解决方案&#xff1a;使用 webdriver manager 自动适配驱动 使用 selenium 操控浏览器的时候报错&#xff1a; The chromedriver version (114.0.5735.90) detected in PATH at /opt/homebrew/bin/chromedriver might not be compatible with the detected chrome ve…...

pytest.param作为pytest.mark.parametrize的参数进行调用

pytest.param&#xff1a;在 pytest.mark.parametrize 中可以作为一个指定的参数进行调用 获取数据库&#xff08;网页端&#xff09;数据&#xff0c;通过pytest.param包装成数据包用于pytest.mark.parametrize 中实现数据驱动调用。 import os import pytest import json fr…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...