当前位置: 首页 > news >正文

计算机设计大赛 深度学习大数据物流平台 python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 物流大数据平台的架构与设计
  • 3 智能车货匹配推荐算法的实现
    • **1\. 问题陈述**
    • **2\. 算法模型**
    • 3\. 模型构建总览
  • **4 司机标签体系的搭建及算法**
    • **1\. 冷启动**
    • 2\. LSTM多标签模型算法
  • 5 货运价格预测
  • 6 总结
  • 7 部分核心代码
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习大数据物流平台

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

根据研究报告,中国拥有全球最大的道路运输市场,2020年市场规模为人民币6.2万亿元。其中整车(FTL)和零担(LTL)运输占中国公路运输市场的大部分,2020年到达了人民币5.3万亿元。

在这里插入图片描述

整个物流市场由物流公司、专项车队、司机等角色组成。一个普通物流订单由货主,物流公司,车队和司机通过逐层人工订单传递完成。物流中还有计划外的货运需求,需要由调度人员通过人工电话联系各个下级的承运方进行承运。另外,物流行业中还有许多地方需要人工支持,如车辆的在途信息、货运单据以及财务结算。可见,人工支持在物流行业中占有较高比例。

较高的人工支持占比导致物流企业在运营过程中无法针对一些具体的情况或者突发事件进行快速的反应和决策,使得一些中小企业在市场竞争中处于劣势。因此,物流公司需要一个智能高效的数字化物流平台,使其拥有信息化、数据处理以及算法能力,形成一个高效的物流生态。

2 物流大数据平台的架构与设计

物流大数据平台通过数字化各个物流环节,使得各流程实时衔接,提升物流系统的效率。随着车辆的移动、票据资金的流转以及交易的完成,所有业务数据都会沉淀到物流大数据平台。接着,通过大数据平台的计算能力,对数据进行整理,归类和分析,将数据提供给物流平台中的各个应用模块。同时,平台引入算法(机器学习和深度学习),在海量数据中不断接近业务问题的全局最优解,借助算法决策使得收益最大化。

目前,物流大数据技术平台主要是由应用层,算法平台,数据仓库和数据平台组成。

最上层的是 应用层 ,包括销售管理、智能调度、货源推荐、图片资料审核等,提供了平台所需要的核心功能,其实现应用了很多算法。这些算法是在算法平台上开发的。
算法平台 提供丰富的算法以及模型来支撑整个平台的运转。
算法层的下一层是 数据仓库 ,存放了集团所有的业务数据。只有基于这些丰富的数据,算法才能够能够为上层应用提供服务。
最底层是整个 大数据平台基础设施 ,包含CDH集群(Hadoop/ spark/
Impala)、Doris集群和监控系统。它们实现了海量数据的基础存储和计算能力,对批量数据进行秒级的统计分析,让企业的业务人员和分析人员能实时掌握企业的运营情况。

应用案例

在这里插入图片描述

① 车辆在途追踪

数据平台可追踪到任意一台已经安装了特定GPS设备的车辆。GPS设备每三十秒给数据中心传输一条经纬度位置的数据,从而让数据平台获取车辆的实时位置。连续的实时位置可构成行车记录,用于判断车辆在货运的途中是否正常行驶、是否偏离方向、是否超速行驶等。

② 实时调度中心

实时调度中心可以实时地计算出物流平台上各时间段内累计的货运单量、活跃司机数、货主数、交易金额等,便于业务决策。

3 智能车货匹配推荐算法的实现

1. 问题陈述

智能车货匹配推荐算法的应用场景分为两种:一是人找货,二是货找人。人找货是货运司机通过浏览货运信息找到想要运输的货物;货找人是发货人下单后调度人员推送货源信息给货运司机。两个场景均涉及三个变量:司机、货物、环境。(具体涵盖如下图所示)

在这里插入图片描述

唯有合理运用这三个变量,才能计算出合理的车货匹配度。问题可以被抽象地用数学表达为 y=F(Xi, Xu,
Xc),其中y表示匹配程度,Xi指的是我们的item货物,Xu指的是货运司机user,Xc指的是环境context。

不妨将该问题变成点击率预测问题。当司机查看一个货源列表的时候,如果他点击了某条货源信息,就表示该司机对这条货源信息比较感兴趣;如果他没有点击,则假设他对这条货源信息不感兴趣。通过点击数据,我们可以把每一条货源信息标记为0和1,点击是1,未点击是0。从而,根据司机、货物以及环境所有的属性特征,我们预测该货源信息最终是否发生点击(变成了一个二分类问题)。

2. 算法模型

在实际应用中,解决是否点击问题经常引用的模型是DeepFM。DeepFM是深度学习和FM模型结合的一个框架,比单个深度学习模型或FM模型要表现好。

① FM模型

FM (Factorization Machine) 主要是为了解决数据稀疏的情况下,特征怎样组合的问题,也就是特征两两组合的问题。数学表达式如下:

其中n表示样本的特征数。这里的特征是离散化后的特征。与线性模型相比,FM的模型多了特征两两组合的部分。

② DeepFM构建

在这里插入图片描述

DeepFM模型包含FM和DNN两部分,FM模型可以抽取low-order特征,DNN可以抽取high-
order特征,因而无需人工特征工程。FM模块进行一阶和二阶的特征进行组合并学习到低阶特征;深度模型模块可以让模型学到更高阶的特征组合。最终,通过激活函数,预测点击概率。DeepFM具体框架如上图右半部分所示。首先,DeepFM对所有输入的稀疏特征进行embedding向量化,并对不同的特征之间进行交叉,生成新特征。FM
layer实现了上图左上的公式(2),把变量的二阶的特征交叉进行线性累加;Hidden
layer(DNN)实现了特征多重交叉,获得更高阶的特征交叉。FM模型和DNN模块共享特征embedding。通过FM和DNN,模型同时学习低阶和高阶的一个特征组合。

③ 模型评估

我们先用AUC评价并筛选出最优DeepFM模型。除此以外,还有其它离线指标评判模型是否能上线。

离线指标(Top10) : 根据回溯数据 ,模型算出司机(用户)前十适配的货源信息,前十适配的货源里有哪些货源被点击,从而计算出离线的前十点击率;
CTR: 货源展现点击率;
CVR: 订单成交转化率;
订单量: 由对应推荐位。
经过评估,如果该模型比之前的模型离线效果更好,我们就可以上线这个模型,再对其进行基于AB
test的线上效果评估。如下图所示,我们先将用户随机分成三组,占比30%,40%和30%。根据三组的线上CTR和CVR情况,平台抉择出最优版本进行发布。抉择可基于数值,也可基于统计学的假设检验。

在这里插入图片描述

3. 模型构建总览

在这里插入图片描述

平台收集到用户行为数据后,通过实时计算框架,对行为数据进行处理并存到离线仓库,以制作模型训练集。模型给用户提供线上推荐。根据离线仓库里的数据,我们计算出一些离线特征。将离线仓库数据按日处理获得日志,其中包括统计分析以及近线特征。根据统计分析可以提炼出指标报表,为业务与模型训练提供指引;近线特征是指通过司机最近的行为计算其近期特征,可加入推荐模型以获得更好的推荐效果。

4 司机标签体系的搭建及算法

推荐车货匹配系统需要用到很多司机的标签特征,而且公司的产品和运营也需要良好的标签体系的辅助。接下来我们介绍司机的标签体系。

马玉潮:物流平台的车货匹配推荐算法及标签体系搭建

司机的标签体系主要有发货地、目的地、车型、车长、货物等。我们需要通过司机用户的历史行为,包括当前坐标、浏览货源筛选、报价等,做出标签预测。

1. 冷启动

前期数据匮乏时,我们需要经历一个冷启动的阶段。此时我们需要通过一些人工规则方式给司机打标签。例如,当司机访问一个货源时,若这个货源上面有标签,最简单的方法就是把这个货源上的标签打到这个司机身上。但司机的货运需求是变化的。例如,司机A之前更加关注轻工业产品的货运信息,但现在他比较关注普通商品的货运信息。可见,司机的近期的行为才更能代表其目前需求。

对于这个问题,我们借鉴了牛顿冷却定律的思想提出了解决方案。牛顿冷却定律指出物体的冷却速度与它当前温度与室温之间的温差成正比。将该公式映射到推荐场景中,则为距离当前时间越远的行为其权重越低。权重公式:

冷启动下的标签规则为,基于权重公式和人工规定的阈值,通过司机点击行为来给司机打上标签。

2. LSTM多标签模型算法

当累积一定的司机数据后,不仅平台会预测司机标签,司机用户也会自己维护标签。之后我们可以拿完整的司机数据(如标签完整度大于80%且其在app中交互行为超过一定阈值的司机数据)作为训练集,训练模型以预测司机的标签情况。

在这里插入图片描述

这里提出LSTM多标签模型,因为循环神经网络可以处理不定长的用户行为输入。具体框架示意如下:

在这里插入图片描述

X表示的司机行为数据,例如X0表示司机的一次点击行为,X1表示司机的一次电话联系行为。X是不可预测的。司机用户每发生一种行为,都会被构建成输入,并被输入到LSTM模型当中。经过一系列行为后,模型输出对该司机的多标签预测。框架最后一层其实是对每一个标签做二分类,生成了一个多标签模型。

模型评价标准有精确度(Precision)以及召回率(Recall):

在这里插入图片描述

此处L是用户实际标签,P是模型预测标签。

这个模型现在还有以下几点待实现和解决:

  • 预测出来的标签都可以作为推荐模型的一个输入;
  • 司机车型、发货地和卸货地的预测困难,当前司机的车型标签比较少且固定,但司机对于发货地卸货地需求变化多端,因而我们需要更多数据才能更加准确地预测;
  • 召回率与精确度平衡问题,比如给司机推送消息需要更高精确性以减少不必要的打扰。

5 货运价格预测

货运价格一方面可以作为模型的输入,另一方面可为系统整体运作提供提示和参考,尤其是需要知道整体市场价格的调度人员。因此,需要有模型来对货运价格进行预测。若要建模,首先要把货运价格通过专业知识拆分出固定的成本,如过路费、邮费、司机劳务费用、车辆折旧费用等等。另外,针对一些返程空车情况严重的路线,我们还需要考虑供需关系对于价格的影响。基础的货运价格公式和价格模型如下图所示。

在这里插入图片描述

要搭建模型,首先要做特征工程,得到城市、月份、路程、车长以及其他特征。成本分为三种:线性成本、周期成本与时序成本。对于不同成本,我们施与不同的模型策略。线性成本是可以根据货运距离和油价计算出来的成本,例如过路费和邮费,因此使用线性回归模型进行学习。周期成本是跟天气相关、季节相关的。时序成本,如司机劳务费,是随着当地环境因素(如:收入水平)是在动态变化的。因此,通过连续的成本模型LSTM模型去进行预测。对于突发状况,模型则应用规则策略。规则策略主要是靠人工观察市场行情,并调参以调整价格模型。那么随着逐步收集市场数据,模型中可加入市场行情模型实现自动价格调整以及价格预测。

价格模型的评估指标为SMAPE(对称平均绝对值百分比误差),以处理高价带来的高方差。正常来说,模型对价格预测在实际价格上下10%波动,可以达到85%左右的准确率。

6 总结

物流大数据平台通过大量业务数据沉淀,训练出基于DeepFM的车货匹配系统模型,基于LSTM的司机标签体系模型,以及货运价格预测模型,从而成功建造了一个高效的物流生态。

7 部分核心代码

import scipy.io as sio
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
from torch.autograd import Variable
import math
import csv# Define LSTM Neural Networks
class LstmRNN(nn.Module):"""Parameters:- input_size: feature size- hidden_size: number of hidden units- output_size: number of output- num_layers: layers of LSTM to stack"""def __init__(self, input_size, hidden_size=1, output_size=1, num_layers=1):super().__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # utilize the LSTM model in torch.nnself.linear1 = nn.Linear(hidden_size, output_size) # 全连接层def forward(self, _x):x, _ = self.lstm(_x)  # _x is input, size (seq_len, batch, input_size)s, b, h = x.shape  # x is output, size (seq_len, batch, hidden_size)x = x.view(s * b, h)x = self.linear1(x)x = x.view(s, b, -1)return xif __name__ == '__main__':# checking if GPU is availabledevice = torch.device("cpu")if (torch.cuda.is_available()):device = torch.device("cuda:0")print('Training on GPU.')else:print('No GPU available, training on CPU.')# 数据读取&类型转换data_x = np.array(pd.read_csv('Data_x.csv', header=None)).astype('float32')data_y = np.array(pd.read_csv('Data_y.csv', header=None)).astype('float32')# 数据集分割data_len = len(data_x)t = np.linspace(0, data_len, data_len)train_data_ratio = 0.8  # Choose 80% of the data for trainingtrain_data_len = int(data_len * train_data_ratio)train_x = data_x[5:train_data_len]train_y = data_y[5:train_data_len]t_for_training = t[5:train_data_len]test_x = data_x[train_data_len:]test_y = data_y[train_data_len:]t_for_testing = t[train_data_len:]# ----------------- train -------------------INPUT_FEATURES_NUM = 5OUTPUT_FEATURES_NUM = 1train_x_tensor = train_x.reshape(-1, 1, INPUT_FEATURES_NUM)  # set batch size to 1train_y_tensor = train_y.reshape(-1, 1, OUTPUT_FEATURES_NUM)  # set batch size to 1# transfer data to pytorch tensortrain_x_tensor = torch.from_numpy(train_x_tensor)train_y_tensor = torch.from_numpy(train_y_tensor)lstm_model = LstmRNN(INPUT_FEATURES_NUM, 20, output_size=OUTPUT_FEATURES_NUM, num_layers=1)  # 20 hidden unitsprint('LSTM model:', lstm_model)print('model.parameters:', lstm_model.parameters)print('train x tensor dimension:', Variable(train_x_tensor).size())criterion = nn.MSELoss()optimizer = torch.optim.Adam(lstm_model.parameters(), lr=1e-2)prev_loss = 1000max_epochs = 2000train_x_tensor = train_x_tensor.to(device)for epoch in range(max_epochs):output = lstm_model(train_x_tensor).to(device)loss = criterion(output, train_y_tensor)optimizer.zero_grad()loss.backward()optimizer.step()if loss < prev_loss:torch.save(lstm_model.state_dict(), 'lstm_model.pt')  # save model parameters to filesprev_loss = lossif loss.item() < 1e-4:print('Epoch [{}/{}], Loss: {:.5f}'.format(epoch + 1, max_epochs, loss.item()))print("The loss value is reached")breakelif (epoch + 1) % 100 == 0:print('Epoch: [{}/{}], Loss:{:.5f}'.format(epoch + 1, max_epochs, loss.item()))# prediction on training datasetpred_y_for_train = lstm_model(train_x_tensor).to(device)pred_y_for_train = pred_y_for_train.view(-1, OUTPUT_FEATURES_NUM).data.numpy()# ----------------- test -------------------lstm_model = lstm_model.eval()  # switch to testing model# prediction on test datasettest_x_tensor = test_x.reshape(-1, 1,INPUT_FEATURES_NUM)test_x_tensor = torch.from_numpy(test_x_tensor)  # 变为tensortest_x_tensor = test_x_tensor.to(device)pred_y_for_test = lstm_model(test_x_tensor).to(device)pred_y_for_test = pred_y_for_test.view(-1, OUTPUT_FEATURES_NUM).data.numpy()loss = criterion(torch.from_numpy(pred_y_for_test), torch.from_numpy(test_y))print("test loss:", loss.item())# ----------------- plot -------------------plt.figure()plt.plot(t_for_training, train_y, 'b', label='y_trn')plt.plot(t_for_training, pred_y_for_train, 'y--', label='pre_trn')plt.plot(t_for_testing, test_y, 'k', label='y_tst')plt.plot(t_for_testing, pred_y_for_test, 'm--', label='pre_tst')plt.xlabel('t')plt.ylabel('Vce')plt.show()

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

计算机设计大赛 深度学习大数据物流平台 python

文章目录 0 前言1 课题背景2 物流大数据平台的架构与设计3 智能车货匹配推荐算法的实现**1\. 问题陈述****2\. 算法模型**3\. 模型构建总览 **4 司机标签体系的搭建及算法****1\. 冷启动**2\. LSTM多标签模型算法 5 货运价格预测6 总结7 部分核心代码8 最后 0 前言 &#x1f5…...

WPF 附加属性+控件模板,完成自定义控件。建议观看HandyControl源码

文章目录 相关连接前言需要实现的效果附加属性添加附加属性&#xff0c;以Test修改FontSize为例依赖属性使用触发器使用直接操控 结论 控件模板&#xff0c;在HandyControl的基础上面进行修改参考HandyControl的源码控件模板原型控件模板 控件模板触发器完整样式简单使用 结论 …...

编程笔记 Golang基础 040 defer、panic 和 recover

编程笔记 Golang基础 040 defer、panic 和 recover 一、defer二、panic三、recover小结 在Go语言中&#xff0c;defer、panic 和 recover 是一组用于错误处理和控制程序流程的关键字。它们之间的交互有助于实现异常处理机制&#xff0c;并确保资源的正确释放。 一、defer defe…...

通过redfish协议实现服务器固件升级、从虚拟光驱启动自检盘并等待完成,最后截图保存

通过redfish协议实现服务器固件升级、从虚拟光驱启动自检盘并等待完成,最后截图保存 版本信息代码新开发的PCIE设备在做服务器适配时,有时需要服务器厂家更新BMC或BIOS固件。同时,我们也希望对PCIE设备做一些检测,最后收集一些信息存档。如果需要处理的服务器很多,通过BMC的界面…...

ARM 版银河麒麟桌面系统下 Qt 开发环境搭建指南

目录 前言安装Linux ARM 版 QtCreator配置 Qt Creator配置构建套件 第一个麒麟 Qt 应用程序小结 前言 在上一篇文章信创ARM架构QT应用开发环境搭建中建议大家使用 Ubuntu X86 系统作为信创 ARM 架构 QT 应用的开发环境&#xff0c;里面使用了交叉编译的方式。这对于自己的 Qt …...

架构面试题汇总:缓存(二)

目录 1. 问题&#xff1a;什么是缓存&#xff0c;以及为什么我们需要缓存&#xff1f;2. 问题&#xff1a;你能解释一下缓存击穿、缓存雪崩和缓存预热是什么吗&#xff1f;3. 问题&#xff1a;如何在Java中实现缓存&#xff1f;4. 问题&#xff1a;你如何决定哪些数据应该被缓存…...

【docker入门】1-

文章目录 参考&#xff1a; Docker – 容器虚拟化平台。 参考&#xff1a; docker入门&#xff0c;这一篇就够了。【零基础入门Docker】Dockerfile中的USER指令以及dockerfile命令详解dockerfile copy命令...

微信小程序-全局配置

个人笔记&#xff0c;仅供参考。 1.entryPagePath 代码&#xff1a; "entryPagePath": "pages/index/index" 具体用法&#xff1a; 2.pages 小程序中新增/减少页面&#xff0c;都需要对 pages 数组进行修改。 代码&#xff1a; "pages": [&…...

【Android】性能优化之内存、网络、布局、卡顿、安装包、启动速度优化

欢迎来到 Android 开发老生常谈的性能优化篇&#xff0c;本文将性能优化划分为内存、网络、布局、卡顿、安装包、启动速度七块&#xff0c;从这七块优化出发&#xff0c;阐述优化的 Application 的方式。 目录 内存优化避免内存泄漏使用内存分析工具优化数据结构和算法数据缓存…...

第3.6章:StarRocks数据导入——DataX StarRocksWriter

一、Datax 1.1 DataX 3.0概述 DataX3.0是一个异构数据源离线同步工具&#xff0c;可以方便的对各种异构数据源进行高效的数据同步。 其github地址为&#xff1a; https://github.com/alibaba/DataX/blob/master/introduction.mdhttps://github.com/alibaba/DataX/blob/mast…...

【非递归版】归并排序算法(2)

目录 MergeSortNonR归并排序 非递归&归并排序VS快速排序 整体思想 图解分析​ 代码实现 时间复杂度 归并排序在硬盘上的应用&#xff08;外排序&#xff09; MergeSortNonR归并排序 前面的快速排序的非递归实现&#xff0c;我们借助栈实现。这里我们能否也借助栈去…...

[C++]C++实现本地TCP通讯的示例代码

这篇文章主要为大家详细介绍了C如何利用TCP技术,实现本地ROS1和ROS2的通讯,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下 概要服务端代码 头文件源代码客户端代码 概要 利用TCP技术&#xff0c;实现本地ROS1和ROS2的通讯。 服务端代码 头文件 #include &…...

Sora - 探索AI视频模型的无限可能

文章目录 每日一句正能量前言技术解析应用场景未来展望伦理与创意用户体验与互动后记 每日一句正能量 . 一个人&#xff0c;如果没有经受过投资失败的痛楚&#xff0c;又怎么会看到绝望之后的海阔天空。很多时候&#xff0c;经历了人生中最艰难的事&#xff0c;反而锻造了最坚强…...

【JavaScript 漫游】【022】事件模型

文章简介 本篇文章为【JavaScript 漫游】专栏的第 022 篇文章&#xff0c;对 JavaScript 中事件模型相关的知识点进行了总结。 监听函数 浏览器的事件模型&#xff0c;就是通过监听函数&#xff08;listener&#xff09;对事件做出反应。事件发生后&#xff0c;浏览器监听到…...

【加密算法】RSA非对称加密算法简介

目录 前言 工作原理 密钥生成 加密和解密 在Java中使用RSA 生成密钥对 加密和解密数据 加密数据 解密数据 注意事项和最佳实践 结论 前言 RSA&#xff08;Rivest-Shamir-Adleman&#xff09;是一种基于数论的非对称加密算法&#xff0c;广泛应用于数字签名、数据加密…...

深入理解 JavaScript 对象原型,解密原型链之谜(上)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

产品经理学习-产品运营《什么是SOP》

目录 什么是SOP 如何执行SOP 执行SOP的重点 什么是SOP SOP就是项目流程操作的说明书 日常工作中的例行操作&#xff1a; 例行操作是指&#xff0c;在每一天&#xff0c;针对每一个用户&#xff0c;在每个项目之中&#xff0c;都必须完成的操作&#xff0c;这些必须完成的操…...

大数据Hadoop生态圈

存储&#xff1a; HDFS(namenode,datanode) 计算&#xff1a;MapReduce(mapreduce&#xff0c;基于磁盘) 便于用sql操作&#xff1a;Hive(核心 metastore&#xff0c;存储这些结构化的数据)&#xff0c;同类的还有Impala&#xff0c;hbase等 基于yaml的资源调度 hive &…...

算法简介:查找与算法运行时间

文章目录 1. 二分查找与简单查找1.1 运行时间 2. 旅行商问题 算法是一组完成任务的指令。任何代码片段都可以视为算法。 1. 二分查找与简单查找 二分查找是一种算法&#xff0c;其输入是一个有序的元素列表&#xff0c;如果要查找的元素包含在列表中&#xff0c;二分查找返回…...

零基础C++开发上位机--基于QT5.15的串口助手(三)

本系列教程本着实践的目的&#xff0c;争取每一节课都带大家做一个小项目&#xff0c;让大家多实践多试验&#xff0c;这样才能知道自己学会与否。 接下来我们这节课&#xff0c;主要学习一下QT的串口编程。做一款自己的串口助手&#xff0c;那么这里默认大家都是具备串口通信…...

Facebook的虚拟社交愿景:元宇宙时代的新起点

在当今数字化时代&#xff0c;社交媒体已经成为人们生活中不可或缺的一部分。而随着科技的不断进步和社会的发展&#xff0c;元宇宙已经成为了人们关注的热点话题之一。作为社交媒体的领军企业之一&#xff0c;Facebook也在积极探索虚拟社交的未来&#xff0c;将其视为元宇宙时…...

【深度学习笔记】4_6 模型的GPU计算

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 4.6 GPU计算 到目前为止&#xff0c;我们一直在使用CPU计算。对复杂的神经网络和大规模的数据来说&#xff0c;使用CPU来计算可能不够…...

留学申请过程中如何合理使用AI?大学招生官怎么看?

我们采访过的学生表示&#xff0c;他们在写essay的过程中会使用 ChatGPT&#xff0c;主要用于以下两个方面&#xff1a;第一&#xff0c;生成想法和头脑风暴&#xff1b;第二&#xff0c;拼写和语法检查。 纽约时报的娜塔莎辛格&#xff08;Natasha Singer&#xff09;在一篇文…...

vue2与vue3的diff算法有什么区别

在 Vue 中&#xff0c;虚拟 DOM 是一种重要的概念&#xff0c;它通过将真实的 DOM 操作转化为对虚拟 DOM 的操作&#xff0c;从而提高应用的性能。Vue 框架在虚拟 DOM 的更新过程中采用了 Diff 算法&#xff0c;用于比较新旧虚拟节点树&#xff0c;找出需要更新的部分&#xff…...

ES小总结

组合查询 FunctionScoreQueryBuilder functionScoreQuery QueryBuilders.functionScoreQuery(boolQuery,new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.termQuery("isAD",true),Score…...

vue2与vue3中父子组件传参的区别

本次主要针对vue中父子组件传参所进行讲解 一、vue2和vue3父传子区别 1.vue2的父传子 1).在父组件子标签中自定义一个属性 <sonPage :子组件接收到的类名"传输的数据">子组件</sonPage> 2).在子组件中peops属性中拿到自定属性 props: {子组件接收的…...

使用vuetify实现全局v-alert消息通知

前排提示&#xff0c;本文为引流文&#xff0c;文章内容不全&#xff0c;更多信息前往&#xff1a;oldmoon.top 查看 简介 使用强大的Vuetify开发前端页面&#xff0c;结果发现官方没有提供简便的全局消息通知组件&#xff08;像Element中的ElMessage那样&#xff09;&#xf…...

CentOS 7.9上编译wireshark 3.6

工作环境是Centos 7.9&#xff0c;原本是通过flathub安装的wireshark&#xff0c;但是在gnome的application installer上升级到wireshark 4.2.3之后就运行不起来了&#xff0c;flatpak run org.wireshark.Wireshark启动提示缺少qt6&#xff0c;查了一下wireshark新版是依赖qt6的…...

初学学习408之数据结构--数据结构基本概念

初学学习408之数据结构我们先来了解一下数据结构的基本概念。 数据结构&#xff1a;是相互之间存在一种或多种特定关系的数据元素的集合。 本内容来源于参考书籍《大话数据结构》与《王道数据结构》。除去书籍中的内容&#xff0c;作为初学者的我会尽力详细直白地介绍数据结构的…...

Java项目中必须使用本地缓存的几种情况

Java项目中必须使用本地缓存的几种情况 在Java项目的开发过程中&#xff0c;为了提高应用的性能和响应速度&#xff0c;缓存机制经常被使用。其中&#xff0c;本地缓存作为一种常见的缓存方式&#xff0c;将数据存储在应用程序的本地内存或磁盘中&#xff0c;以便快速访问。下…...

abcd设计官网/seo中文意思

点击上方蓝色字体&#xff0c;关注我们今天想写一下关于用qml创建QTabWidget的案例&#xff0c;查看了Qt Creator中的示例&#xff0c;发现有这个示例&#xff0c;就拿出来进行了修改。源示例请按照下图查找。对其进行了少许的修改&#xff0c;如下图当你打开这个项目你会发现它…...

镇江网站排名公司/seo品牌优化

bigint从 -2^63 (-9223372036854775808) 到 2^63-1 (9223372036854775807) 的整型数据(所有数字)。存储大小为 8 个字节。P.S. bigint已经有长度了&#xff0c;在mysql建表中的length&#xff0c;只是用于显示的位数int从 -2^31 (-2,147,483,648) 到 2^31 – 1 (2,147,483,647)…...

wordpress怎么添加论坛/网站服务器多少钱一年

声明式函数定义&#xff1b; function add(m,n) {alert(mn);} 这种方式等同于构造一个Function类的实例的方式&#xff1a; var add new Function("m", "n", "alert(mn);"); 转载于:https://www.cnblogs.com/guangshan/p/4593188.html...

网站鼠标移上去显示层/大数据营销名词解释

1、设置enable密码 R5(config)#enable password cisco 2、开启telnet&#xff0c;并设置telnet密码 R5#conf t R5(config)#line vty 0 4R5(config-line)#password ciscoR5(config-line)#loginR5(config-line)#transport input telnet 也可以在远程登入的时候设置不需要要密码&a…...

c 做网站好嘛/百度导航最新版本免费下载

http://codeforces.com/problemset/status debug了好久的一份代码。思路简单就是模拟&#xff0c;昨天晚上写的时候脑子短路&#xff0c;写错一个地方然后就不好改了&#xff0c;错误的样例正好还是“IQ0”仿佛在嘲讽着什么hhh,以后可长点心⑧ #include<iostream> #inc…...

网址在线生成/网站优化建设

百度ueditor上传图片默认没有水印功能的如果我们要添加水印需要在程序上进行一些添加了&#xff0c;下面来看看百度ueditor上传图片加水印的例子吧。打开UEditor压缩包下php目录中的上传类文件&#xff1a;Uploader.class.php在上传文件的主要方法下添加调用水印处理方法&#…...