集团网站建设价格/今天刚刚发生的重大新闻
redis 和 和 memcached 什么区别?为什么高并发下有时单线程的 redis 比多线程的memcached 效率要高?
区别:
1.mc 可缓存图片和视频。rd 支持除 k/v 更多的数据结构;
2.rd 可以使用虚拟内存,rd 可持久化和 aof 灾难恢复,rd 通过主从支持数据备份;
3.rd 可以做消息队列。
原因:mc 多线程模型引入了缓存一致性和锁,加锁带来了性能损耗。
redis 主从复制如何实现的?redis 的集群模式如何实现?redis 的 的 key 是如何寻址的?
主从复制实现:主节点将自己内存中的数据做一份快照,将快照发给从节点,从节点将数
据恢复到内存中。之后再每次增加新数据的时候,主节点以类似于 mysql 的二进制日志方
式将语句发送给从节点,从节点拿到主节点发送过来的语句进行重放。
分片方式:
- 客户端分片
- 基于代理的分片
● Twemproxy
● codis
-路由查询分片
● Redis-cluster(本身提供了自动将数据分散到 Redis Cluster 不同节点的能力,整个数据集
合的某个数据子集存储在哪个节点对于用户来说是透明的)
redis-cluster 分片原理:Cluster 中有一个 16384 长度的槽(虚拟槽),编号分别为 0-16383。
每个 Master 节点都会负责一部分的槽,当有某个 key 被映射到某个 Master 负责的槽,那
么这个 Master 负责为这个 key 提供服务,至于哪个 Master 节点负责哪个槽,可以由用户
指定,也可以在初始化的时候自动生成,只有 Master 才拥有槽的所有权。Master 节点维
护着一个 16384/8 字节的位序列,Master 节点用 bit 来标识对于某个槽自己是否拥有。比
如对于编号为 1 的槽,Master 只要判断序列的第二位(索引从 0 开始)是不是为 1 即可。
这种结构很容易添加或者删除节点。比如如果我想新添加个节点 D, 我需要从节点 A、B、
C 中得部分槽到 D 上。
使用 redis 如何设计分布式锁?说一下实现思路?使用 zk 可以吗?如何实现?这两种有什么区别?
redis:
1.线程 A setnx(上锁的对象,超时时的时间戳 t1),如果返回 true,获得锁。
2.线程 B 用 get 获取 t1,与当前时间戳比较,判断是是否超时,没超时 false,若超时执行第 3 步;
3.计算新的超时时间 t2,使用 getset 命令返回 t3(该值可能其他线程已经修改过),如果t1==t3,获得锁,如果 t1!=t3 说明锁被其他线程获取了。
4.获取锁后,处理完业务逻辑,再去判断锁是否超时,如果没超时删除锁,如果已超时,不用处理(防止删除其他线程的锁)。
zk:
1.客户端对某个方法加锁时,在 zk 上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点 node1;
2.客户端获取该路径下所有已经创建的子节点,如果发现自己创建的 node1 的序号是最小的,就认为这个客户端获得了锁。
3.如果发现 node1 不是最小的,则监听比自己创建节点序号小的最大的节点,进入等待。
4.获取锁后,处理完逻辑,删除自己创建的 node1 即可。
区别:zk 性能差一些,开销大,实现简单。
知道 redis 的持久化吗?底层如何实现的?有什么优点缺点?
RDB(Redis DataBase:在不同的时间点将 redis 的数据生成的快照同步到磁盘等介质上):内存到硬盘的快照,定期更新。缺点:耗时,耗性能(fork+io 操作),易丢失数据。
AOF(Append Only File:将 redis 所执行过的所有指令都记录下来,在下次 redis 重启时,只需要执行指令就可以了):写日志。缺点:体积大,恢复速度慢。
bgsave 做镜像全量持久化,aof 做增量持久化。因为 bgsave 会消耗比较长的时间,不够实时,在停机的时候会导致大量的数据丢失,需要 aof 来配合,在 redis 实例重启时,优先使用 aof 来恢复内存的状态,如果没有 aof 日志,就会使用 rdb 文件来恢复。Redis 会定期做aof 重写,压缩 aof 文件日志大小。Redis4.0 之后有了混合持久化的功能,将 bgsave 的全量和 aof 的增量做了融合处理,这样既保证了恢复的效率又兼顾了数据的安全性。bgsave 的原理,fork 和 cow, fork 是指 redis 通过创建子进程来进行 bgsave 操作,cow 指的是 copy onwrite,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。
redis 过期策略都有哪些?LRU 算法知道吗?写一下 java 代码实现?
过期策略:
定时过期(一 key 一定时器),惰性过期:只有使用 key 时才判断 key 是否已过期,过期则清除。定期过期:前两者折中。
LRU:new LinkedHashMap<K, V>(capacity, DEFAULT_LOAD_FACTORY, true);
//第三个参数置为 true,代表 linkedlist 按访问顺序排序,可作为 LRU 缓存;设为 false 代表按插入顺序排序,可作为 FIFO 缓存
LRU 算法实现:1.通过双向链表来实现,新数据插入到链表头部;2.每当缓存命中(即缓存数据被访问),则将数据移到链表头部;3.当链表满的时候,将链表尾部的数据丢弃。
LinkedHashMap:HashMap 和双向链表合二为一即是 LinkedHashMap。HashMap 是无序的,LinkedHashMap 通过维护一个额外的双向链表保证了迭代顺序。该迭代顺序可以是插入顺序(默认),也可以是访问顺序。
缓存穿透、缓存击穿、缓存雪崩解决方案?
缓存穿透:指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。
解决方案:1.查询返回的数据为空,仍把这个空结果进行缓存,但过期时间会比较短;2.布隆过滤器:将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对 DB 的查询。
缓存击穿:对于设置了过期时间的 key,缓存在某个时间点过期的时候,恰好这时间点对这个 Key 有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案:1.使用互斥锁:当缓存失效时,不立即去 load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db 的操作并回设缓存,否则重试 get 缓存的方法。2.永远不过期:物理不过期,但逻辑过期(后台异步线程去刷新)。
缓存雪崩:设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到 DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多 key,击穿是某一个key 缓存。
解决方案:将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如 1-5 分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
在选择缓存时,什么时候选择 redis ,什么时候选择 memcached
选择 redis 的情况:
1、复杂数据结构,value 的数据是哈希,列表,集合,有序集合等这种情况下,会选择redis, 因为 memcache 无法满足这些数据结构,最典型的的使用场景是,用户订单列表,用户消息,帖子评论等。
2、需要进行数据的持久化功能,但是注意,不要把 redis 当成数据库使用,如果 redis挂了,内存能够快速恢复热数据,不会将压力瞬间压在数据库上,没有 cache 预热的过程。对于只读和数据一致性要求不高的场景可以采用持久化存储
3、高可用,redis 支持集群,可以实现主动复制,读写分离,而对于 memcache 如果想要实现高可用,需要进行二次开发。
4、存储的内容比较大,memcache 存储的 value 最大为 1M。
选择 memcache 的场景:
1、纯 KV,数据量非常大的业务,使用 memcache 更合适,原因是,
a)memcache 的内存分配采用的是预分配内存池的管理方式,能够省去内存分配的时间,redis 是临时申请空间,可能导致碎片化。
b)虚拟内存使用,memcache 将所有的数据存储在物理内存里,redis 有自己的 vm 机制,理论上能够存储比物理内存更多的数据,当数据超量时,引发 swap,把冷数据刷新到磁盘上,从这点上,数据量大时,memcache 更快
c)网络模型,memcache 使用非阻塞的 IO 复用模型,redis 也是使用非阻塞的 IO 复用模型,但是 redis 还提供了一些非 KV 存储之外的排序,聚合功能,复杂的 CPU 计算,会阻塞整个 IO 调度,从这点上由于 redis 提供的功能较多,memcache 更快些
d) 线程模型,memcache 使用多线程,主线程监听,worker 子线程接受请求,执行读写,这个过程可能存在锁冲突。redis 使用的单线程,虽然无锁冲突,但是难以利用多核的特性提升吞吐量。
缓存与数据库不一致怎么办
假设采用的主存分离,读写分离的数据库,如果一个线程 A 先删除缓存数据,然后将数据写入到主库当中,这个时候,主库和从库同步没有完成,线程 B 从缓存当中读取数据失败,从从库当中读取到旧数据,然后更新至缓存,这个时候,缓存当中的就是旧的数据。发生上述不一致的原因在于,主从库数据不一致问题,加入了缓存之后,主从不一致的时间被拉长了
处理思路:在从库有数据更新之后,将缓存当中的数据也同时进行更新,即当从库发生了数据更新之后,向缓存发出删除,淘汰这段时间写入的旧数据。
主从数据库不一致如何解决
场景描述,对于主从库,读写分离,如果主从库更新同步有时差,就会导致主从库数据的不一致
1、忽略这个数据不一致,在数据一致性要求不高的业务下,未必需要时时一致性
2、强制读主库,使用一个高可用的主库,数据库读写都在主库,添加一个缓存,提升数据读取的性能。
3、选择性读主库,添加一个缓存,用来记录必须读主库的数据,将哪个库,哪个表,哪个主键,作为缓存的 key,设置缓存失效的时间为主从库同步的时间,如果缓存当中有这个数据,直接读取主库,如果缓存当中没有这个主键,就到对应的从库中读取。
Redis 常见的性能问题和解决方案
1、master 最好不要做持久化工作,如 RDB 内存快照和 AOF 日志文件
2、如果数据比较重要,某个 slave 开启 AOF 备份,策略设置成每秒同步一次
3、为了主从复制的速度和连接的稳定性,master 和 Slave 最好在一个局域网内
4、尽量避免在压力大得主库上增加从库
5、主从复制不要采用网状结构,尽量是线性结构,Master<–Slave1<----Slave2 …
Redis 的数据淘汰策略有哪些
voltile-lru 从已经设置过期时间的数据集中挑选最近最少使用的数据淘汰
voltile-ttl 从已经设置过期时间的数据库集当中挑选将要过期的数据
voltile-random 从已经设置过期时间的数据集任意选择淘汰数据
allkeys-lru 从数据集中挑选最近最少使用的数据淘汰
allkeys-random 从数据集中任意选择淘汰的数据
no-eviction 禁止驱逐数据
Redis 当中有哪些数据结构
字符串 String、字典 Hash、列表 List、集合 Set、有序集合 SortedSet。如果是高级用户,那么还会有,如果你是 Redis 中高级用户,还需要加上下面几种数据结构 HyperLogLog、Geo、Pub/Sub。
假如 Redis 里面有 1 亿个 key ,其中有 10w 个 个 key 是以某个固定的已知的前缀开头的,如果将它们全部找出来?
使用 keys 指令可以扫出指定模式的 key 列表。
对方接着追问:如果这个 redis 正在给线上的业务提供服务,那使用 keys 指令会有什么问题?
这个时候你要回答 redis 关键的一个特性:redis 的单线程的。keys 指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用 scan 指令,scan 指令可以无阻塞的提取出指定模式的 key 列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用 keys 指令长。
使用 Redis 做过异步队列吗,是如何实现的
使用 list 类型保存数据信息,rpush 生产消息,lpop 消费消息,当 lpop 没有消息时,可以 sleep 一段时间,然后再检查有没有信息,如果不想 sleep 的话,可以使用 blpop, 在没有信息的时候,会一直阻塞,直到信息的到来。redis 可以通过 pub/sub 主题订阅模式实现一个生产者,多个消费者,当然也存在一定的缺点,当消费者下线时,生产的消息会丢失。
Redis 如何实现延时队列
使用 sortedset,使用时间戳做 score, 消息内容作为 key,调用 zadd 来生产消息,消费者使用 zrangbyscore 获取 n 秒之前的数据做轮询处理。
相关文章:

Java每天15道面试题 | Redis
redis 和 和 memcached 什么区别?为什么高并发下有时单线程的 redis 比多线程的memcached 效率要高? 区别: 1.mc 可缓存图片和视频。rd 支持除 k/v 更多的数据结构; 2.rd 可以使用虚拟内存,rd 可持久化和 aof 灾难恢复࿰…...

13_pinctrl子系统
总结 pinctrl作为驱动 iomuxc节点在设备树里面 存储全部所需的引脚配置信息 iomux节点匹配pinctrl子系统 控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器 接着在程序配置gpio相关寄存器 这样搞效率很低 所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时…...

Linux系统对于实施人员的价值
Linux系统对于实施人员的价值 随着互联网的发展,linux系统越来越突显了巨大的作用,很多互联网公司,政府企业,只要用到服务器的地方几乎都能看到linux系统的身影,可以说服务是不是在linux系统跑的代表了企业的技术水平&…...

ForkJoin 和 Stream并行流
还在用 for 循环计算两个数之间所有数的和吗?下面提供两种新方法! 1. ForkJoin 1.1 背景 要知道,在一个方法中,如果没有做特殊的处理,那么在方法开始到结束使用的都是同一个线程,无论你的业务有多复杂 那…...

逻辑优化-cofactor
1. 简介 逻辑综合中的Cofactor优化方法是一种重要的逻辑优化技术。它通过提取逻辑电路中的共同部分,从而简化电路、减小面积和延迟。该方法广泛应用于电子设计自动化(EDA)领域中的逻辑综合、等价转换和优化等方面。 Cofactor优化方法最早由…...

车道线检测CondLaneNet论文和源码解读
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution Paper:https://arxiv.org/pdf/2105.05003.pdf code:GitHub - aliyun/conditional-lane-detection 论文解读: 一、摘要 这项工作作为车道线检测任…...

vue3的插槽slots
文章目录普通插槽Test.vueFancyButton.vue具名插槽Test.vueBaseLayout.vue作用域插槽默认插槽Test.vueBaseLayout.vue具名作用域插槽Test.vueBaseLayout.vue普通插槽 父组件使用子组件时,在子组件闭合标签中提供内容模板,插入到子组件定义的出口的地方 …...

docker学校服务器管理
docker 学校服务器管理使用docker,docker使用go语言编写。对于docker的理解,需要知道几个关键字docker, scp,images, container。 docker-码头工人scp-传输命令images/repository-镜像container-容器 docker是码头工人,scp相当…...

pv和pvc
一、PV和PVC详解当前,存储的方式和种类有很多,并且各种存储的参数也需要非常专业的技术人员才能够了解。在Kubernetes集群中,放了方便我们的使用和管理,Kubernetes提出了PV和PVC的概念,这样Kubernetes集群的管理人员就…...

k8s篇之Pod 干预与 PDB
文章目录自愿干预和非自愿干预PDBPDB 示例分离集群所有者和应用程序所有者角色如何在集群上执行中断操作自愿干预和非自愿干预 Pod 不会消失,除非有人(用户或控制器)将其销毁,或者出现了不可避免的硬件或软件系统错误。 我们把这…...

Django学习17 -- ManytoManyField
1. ManyToManyField (参考:Django Documentation Release 4.1.4) 类定义 class ManyToManyField(to, **options)使用说明 A many-to-many relationship. Requires a positional argument: the class to which the model is related, which w…...

既然有MySQL了,为什么还要有Redis?
目录专栏导读一、同样是缓存,用map不行吗?二、Redis为什么是单线程的?三、Redis真的是单线程的吗?四、Redis优缺点1、优点2、缺点五、Redis常见业务场景六、Redis常见数据类型1、String2、List3、Hash4、Set5、Zset6、BitMap7、Bi…...

RSTP基础要点(上)
RSTP基础RSTP引入背景STP所存在的问题RSTP对于STP的改进端口角色重新划分端口状态重新划分快速收敛机制:PA机制端口快速切换边缘端口的引入RSTP引入背景 STP协议虽然能够解决环路问题,但是由于网络拓扑收敛较慢,影响了用户通信质量ÿ…...

Linux操作系统学习(信号处理)
文章目录进程信号信号的产生方式(信号产生前)1. 硬件产生2.调用系统函数向进程发信号3.软件产生4.定位进程崩溃的代码(进程异常退出产生信号)信号保存的方式(信号产生中)获取pending表&&修改block表…...

CopyOnWriteArrayList 源码解读
一、CopyOnWriteArrayList 源码解读 在 JUC 中,对于 ArrayList 的线程安全用法,比较推崇于使用 CopyOnWriteArrayList ,那 CopyOnWriteArrayList是怎么解决线程安全问题的呢,本文带领大家一起解读下 CopyOnWriteArrayList 的源码…...

方法
方法方法(函数)一、课前问答二、方法和函数三、方法的参数3.1 单个参数3.2 多个参数四、方法的返回值五、方法的多级调用六、递归方法(函数) 一、课前问答 1、break和continue的区别 2、嵌套循环的执行流程 3、二进制有哪些运算&…...

C/C++实现发送邮件功能(附源码)
C++常用功能源码系列 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项目中拿来就用的效果,这样更好的服务于工作实践。 专栏介绍:专栏讲本人近10年后端开发常用的案例,以高质量的代码提取出来,并对其进行了介绍。…...

Java虚拟机JVM-运行时数据区域说明
及时编译器 HotSpot虚拟机中含有两个即时编译器,分别是编译耗时短但输出代码优化程度较低的客户端编译器(简称为C1)以及编译耗时长但输出代码优化质量也更高的服务端编译器(简称为C2),通常它们会在分层编译…...

修复电子管
年前在咸鱼捡漏买到了10根1G4G电子管,这是一种直热三极管,非常的少见。买回来的时候所有的灯丝都是通的,卖家说都是新的,库存货,但是外观实在是太糟糕了,看着就像被埋在垃圾场埋了几十年的那种,…...

【Java】反射机制和代理机制
目录一、反射1. 反射概念2. 反射的应用场景3. 反射机制的优缺点4. 反射实战获取 Class 对象的四种方式二、代理机制1. 代理模式2. 静态代理3. 动态代理3.1 JDK动态代理机制1. 介绍2.JDK 动态代理类使用步骤3. 代码示例3.2 CGLIB 动态代理机制1.介绍2.CGLIB 动态代理类使用步骤3…...

synchronized底层
Monitor概念一、Java对象头二、Monitor2.1、Monitor—工作原理2.2、Monitor工作原理—字节码角度2.2、synchronized进阶原理(优化)2.3、synchronized优化原理——轻量级锁2.4、synchronized优化原理——锁膨胀2.5、synchronized优化原理——自旋优化2.6、…...

数据结构:复杂度的练习(笔记)
数据结构:复杂度的练习(笔记) 例题一: 可以先给数组排序,然后再创建一个i值,让他循环一次一次,遍历这个排序后的数组,但如果用qsort函数进行排序,时间复杂度就和题目要求…...

JAVA练习69- 从前序与中序遍历序列构造二叉树
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 提示:这里可以添加本文要记录的大概内容: 3月5日练习内容 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目-从…...

brew安装问题
最近使用mac安装了Python和PyCharm,使用python中的绘制图像的turtle库后,执行报错: import _tkinter # If this fails your Python may not be configured for Tk ModuleNotFoundError: No module named _tkinter 查询后需在mac 命令行执行&…...

【数据挖掘与商务智能决策】第一章 数据分析与三重工具
numpy基础 numpy与数组 import numpy as np # 用np代替numpy,让代码更简洁 a [1, 2, 3, 4] # 创建列表a b np.array([1, 2, 3, 4]) #从列表ach print(a) print(b) print(type(a)) #打印a类型 print(type(b)) #打印b类型[1, 2, 3, 4] [1 2 3 4] <class ‘list’>…...

计算机底层:BDC码
计算机底层:BDC码 BDC码的作用: 人类喜欢十进制,而机器适合二进制,因此当机器要翻译二进制给人看时,就会进行二进制和十进制的转换,而常规的转换法(k*位权)太麻烦。因此就出现了不同…...

【C++】平衡二叉搜索(AVL)树的模拟实现
一、 AVL树的概念 map、multimap、set、multiset 在其文档介绍中可以发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树…...

[2019红帽杯]childRE
题目下载:下载 参考:re学习笔记(24)BUUCTF-re-[2019红帽杯]childRE_Forgo7ten的博客-CSDN博客 这道题涉及到c函数的修饰规则,按照规则来看应该是比较容易理解的。上面博客中有总结规则,可以学习一下。 载…...

2D图像处理:九点标定_下(机械手轴线与法兰轴线不重合)(附源码)
文章目录 2. 机械手轴线与法兰轴线不重合2.1 两次拍照避免标定旋转中心2.2 旋转中心标定2.3 非标定中心的方法2.3.1 预备内容-点坐标旋转计算2.3.2 工件存在平移和旋转3. 代码(待更新)上一篇:2D图像处理:九点标定_上(机械手轴线与法兰轴线重合)(附源码) 2. 机械手轴线…...

【二分查找】分巧克力、机器人跳跃、数的范围
Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...