phpstudy怎样做多个网站/公司广告推广
软件环境:Ubuntu20.04
Linux内核源码:3.4.39
硬件环境:GEC6818
什么是驱动?简单来说就是让硬件工作起来的程序代码。
Linux驱动模块加载有两种方式:
1、把写好的驱动代码直接编译进内核。
2、把写好的驱动代码编译成一个可加载的模块,然后再插入到内核中。
我们一般都是使用第二种方式,需要时加载,不需要时卸载,这样方便修改调试。
写驱动程序和应用程序不一样,应用程序出现了问题(像数组越界)会有系统报错该应用程序停止运行,而驱动程序是要加载到内核中出现问题可能会导致整个系统崩溃。
1、内核模块编程注意事项:
1)不能使用C语言库和C语言标准头文件
C语言库和C语言标准头文件(pirntf函数,stdio头文件等)是应用层才有的,而驱动作为底层是没有的。
2)没有内存保护机制
3)不能处理浮点运算
2、内核模块的编写:
#include <linux/module.h>
#include <linux/kernel.h> //加载函数
int hello_init(void)
{printk("Hello World!\n");return 0;
}//卸载函数
void hello_exit(void)
{printk("Bye!\n");
}//声明模块的入口和出口
module_init(hello_init);
module_exit(hello_exit);//GPL模块许可证
MODULE_LICENSE("GPL");
//模块作者
MODULE_AUTHOR("xin");
//版本号
MODULE_VERSION("1.0");
//描述信息
MODULE_DESCRIPTION("this is a test module!");
首先包含2个驱动必须要的头文件。
#include <linux/module.h>
#include <linux/kernel.h>
加载函数
加载函数是没有参数返回值为int的一个函数,其中函数名只要不和其他函数名起冲突随便起,此外返回0表示加载成功。加载模块时自动调用加载函数,当我们把驱动程序加载到内核中第一个就会进入加载函数,有点像应用程序中的main()函数相当于程序的入口。
//加载函数
int xxx(void)
{
return 0;
}
卸载函数
卸载函数是没有参数没有返回值的一个函数,函数名也是随便起。卸载模块时自动调用卸载函数,当我们把驱动程序从内核中卸载时,就会进入到卸载函数中。
//卸载函数
void yyy(void)
{
}
使用宏来修饰加载函数和卸载函数
一个驱动程序中会有多个和加载函数和卸载函数相同结构的函数,怎么样区分呢?就需要使用宏来修饰加载和卸载函数了,只有经过宏修饰的函数才会被认作是加载函数和卸载函数。一个驱动程序中只能有一个加载和卸载函数。
//修饰加载函数
module_init(xxx);
//修饰卸载函数
module_exit(yyy);
注意: printk()是内核中的打印函数,不要和printf()等打印函数搞错了,但两者用法几乎差不多。
//GPL模块许可证
MODULE_LICENSE("GPL");
在编写内核模块时必须加上模块许可证,防止污染内核,造成某些功能无法使用。 "GPL" 是指明了 这是GNU General Public License的任意版本。
//模块作者
MODULE_AUTHOR("xin");
//版本号
MODULE_VERSION("1.0");
//描述信息
除了模块许可证以外,还可以加上模块作者,版本号,描述信息等信息就不一一列举了。
3、内核模块的编译:
内核模块编译要是用它对应内核的编译方法来进行编译。
就是说要使用开发板中的Linux系统内核来编译,例如使用GEC6818开发板,想要把写好的驱动程序加载到该开发板的内核中,就必须使用GEC6818开发板中Linux系统的内核源码来编译,可以把驱动程序放入开发板中进行编译,也可以把相应的内核源码(必须是编译过的内核)放进Ubuntu中,然后在Ubuntu中进行编译,再把编译好的模块放进开发板中。
编写Makefile文件
为什么要写Makefile文件呢?Makefile是Make读入的唯一配置文件,而Make是一个工程管理器,所谓工程管理器就指用来管理较多文件的。可以想象一下,当有一上百个文件的代码构成的项目,如果其中只有一个或少数几个文件进行了修改,由于编译器不知道哪些文件是最近更新的,只知道需要包含这些文件才能把源代码编译成可执行文件,于是程序员就不得不重新输入数目如此庞大的文件名以完成最后的编译工作。
这样就有了Make工程管理器,实际上就是个”自动编译管理器“,这里的“自动”是指它能够根据文件时间戳自动发现更新过的文件而减少编译的工作量,同时通过读入Makefile文件的内容来执行大量的编译工作。用户只需编写一次简单的编译语句就可以了。他大大提高了实际项目的工作效率,而且几乎所有Linux下的项目编程均会涉及它。
以上大概讲述Make的由来和工作原理已经和Makefile的关系。我们暂时还不能接触到这么大的项目,所以我们的Makefile文件会简单很多。
看一个简单的Makefile文件。
ifeq ($(KERNELRELEASE),)#内核源代码路径
KERNELDIR := /lib/modules/$(shell uname -r)/build
#模块源代码路径
PWD := $(shell pwd)default:$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
clean:rm -rf *.o *.ko *.mod .*.cmd *.mod.* modules.order Module.symvers .tmp_versionselse
#obj-m表示编译生成可加载模块,obj-y表示直接将模块编译进内核。
obj-m := hello.oendif
ifeq ($(KERNELRELEASE),)
判断变量KERNELRELEASE是否为空,KERNELRELEASE是在内核源码的顶层Makefile中定义的一个变量,在第一次读取执行此Makefile时,KERNELRELEASE没有被定义,所以执行下面的代码。
KERNELDIR := /lib/modules/$(shell uname -r)/build
定义一个变量KERNELDIR 来存放内核源码的路径,其中$(shell uname -r)是使用shell命令来打印系统的内核版本号。
这样就有完整的路径找到系统内核源码。
PWD := $(shell pwd)
定义一个变量PWD来存放当前模块代码的路径。
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
$(MAKE)就是make。
-C 参数告诉make把工作目录切换到 /lib/modules/$(shell uname -r)/build/目录,然后首先解析该目录下的顶层makefile。这保证了当前编译的模块与内核是适配的——使用相同的编译连接参数,同时KERNELRELEASE会被定义。
然后是M参数M=$(PWD),内核使用这个变量来确定要构建的外部模块的目录,完成内核的编译配置的读取后,在这个目录里完成模块的编译。
其实在指令中module表明的意思是把驱动编译成模块
rm -rf *.o *.ko *.mod .*.cmd *.mod.* modules.order Module.symvers .tmp_versions
这就很好理解了,就是把该目录里所有后缀名为o、ko、mod等文件删除。
obj-m := hello.o
obj-m表示以内核模块的形式单独编译,生成可加载模块,最终出现hello.ko的驱动文件。
当使用make命令后面不带参数是执行default语句,而make命令后面带有clean参数则是执行clean语句。Makefile还有许多的语法,大家感兴趣可自行百度。
执行Makefile流程(make):
第一次进入Makefile文件判断KERNELRELEASE为空,执行default语句,会跳转到内核源码的目录解析该目录下的顶层文件,同时KERNELRELEASE会被定义,然后跳转到之前的目录,第二次进入Makefile文件。此时KERNELRELEASE不为空,进入else语句,编译生成可加载模块.ko驱动文件。
执行Makefile流程(make clean):
进入Makefile文件判断KERNELRELEASE为空,执行clean语句,删除目录下带有指定后缀名的文件。
4、模块的使用和基本命令
make:编译模块
make clean:删除指定后缀名文件
insmod:加载模块
lsmod:列出内核已载入模块的状态
modinfo: 显示内核模块的信息
dmesg: 显示内核的相关信息
rmmod: 卸载内核中指定的模块
其中加载和卸载模块的指令需要root权限。
以上是最简单的驱动程序和Makefile的编写以及模块的使用和基本命令,以后复杂的驱动程序都是在此基础上增加修改,大家可以在自己Ubuntu上编写测试一下(把该模块加载到开发板上应该会出问题,因为使用的Ubuntu中的内核源码来编译,可以加载到Ubuntu中内核测试一下,后续会有加载到开发板上和驱动程序和Makefile文件的编写教程)。
相关文章:

初学者的第一个Linux驱动
软件环境:Ubuntu20.04 Linux内核源码:3.4.39 硬件环境:GEC6818 什么是驱动?简单来说就是让硬件工作起来的程序代码。 Linux驱动模块加载有两种方式: 1、把写好的驱动代码直接编译进内核。 2、把写好的驱动代码编…...

7. 拼数
1 题目描述 拼数成绩10开启时间2021年09月24日 星期五 18:00折扣0.8折扣时间2021年11月15日 星期一 00:00允许迟交否关闭时间2021年11月23日 星期二 00:00 设有 n个正整数 a[1]…a[n],将它们联接成一排,相邻数字首尾相接,组成一个最大的整…...

Java每天15道面试题 | Redis
redis 和 和 memcached 什么区别?为什么高并发下有时单线程的 redis 比多线程的memcached 效率要高? 区别: 1.mc 可缓存图片和视频。rd 支持除 k/v 更多的数据结构; 2.rd 可以使用虚拟内存,rd 可持久化和 aof 灾难恢复࿰…...

13_pinctrl子系统
总结 pinctrl作为驱动 iomuxc节点在设备树里面 存储全部所需的引脚配置信息 iomux节点匹配pinctrl子系统 控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器 接着在程序配置gpio相关寄存器 这样搞效率很低 所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时…...

Linux系统对于实施人员的价值
Linux系统对于实施人员的价值 随着互联网的发展,linux系统越来越突显了巨大的作用,很多互联网公司,政府企业,只要用到服务器的地方几乎都能看到linux系统的身影,可以说服务是不是在linux系统跑的代表了企业的技术水平&…...

ForkJoin 和 Stream并行流
还在用 for 循环计算两个数之间所有数的和吗?下面提供两种新方法! 1. ForkJoin 1.1 背景 要知道,在一个方法中,如果没有做特殊的处理,那么在方法开始到结束使用的都是同一个线程,无论你的业务有多复杂 那…...

逻辑优化-cofactor
1. 简介 逻辑综合中的Cofactor优化方法是一种重要的逻辑优化技术。它通过提取逻辑电路中的共同部分,从而简化电路、减小面积和延迟。该方法广泛应用于电子设计自动化(EDA)领域中的逻辑综合、等价转换和优化等方面。 Cofactor优化方法最早由…...

车道线检测CondLaneNet论文和源码解读
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution Paper:https://arxiv.org/pdf/2105.05003.pdf code:GitHub - aliyun/conditional-lane-detection 论文解读: 一、摘要 这项工作作为车道线检测任…...

vue3的插槽slots
文章目录普通插槽Test.vueFancyButton.vue具名插槽Test.vueBaseLayout.vue作用域插槽默认插槽Test.vueBaseLayout.vue具名作用域插槽Test.vueBaseLayout.vue普通插槽 父组件使用子组件时,在子组件闭合标签中提供内容模板,插入到子组件定义的出口的地方 …...

docker学校服务器管理
docker 学校服务器管理使用docker,docker使用go语言编写。对于docker的理解,需要知道几个关键字docker, scp,images, container。 docker-码头工人scp-传输命令images/repository-镜像container-容器 docker是码头工人,scp相当…...

pv和pvc
一、PV和PVC详解当前,存储的方式和种类有很多,并且各种存储的参数也需要非常专业的技术人员才能够了解。在Kubernetes集群中,放了方便我们的使用和管理,Kubernetes提出了PV和PVC的概念,这样Kubernetes集群的管理人员就…...

k8s篇之Pod 干预与 PDB
文章目录自愿干预和非自愿干预PDBPDB 示例分离集群所有者和应用程序所有者角色如何在集群上执行中断操作自愿干预和非自愿干预 Pod 不会消失,除非有人(用户或控制器)将其销毁,或者出现了不可避免的硬件或软件系统错误。 我们把这…...

Django学习17 -- ManytoManyField
1. ManyToManyField (参考:Django Documentation Release 4.1.4) 类定义 class ManyToManyField(to, **options)使用说明 A many-to-many relationship. Requires a positional argument: the class to which the model is related, which w…...

既然有MySQL了,为什么还要有Redis?
目录专栏导读一、同样是缓存,用map不行吗?二、Redis为什么是单线程的?三、Redis真的是单线程的吗?四、Redis优缺点1、优点2、缺点五、Redis常见业务场景六、Redis常见数据类型1、String2、List3、Hash4、Set5、Zset6、BitMap7、Bi…...

RSTP基础要点(上)
RSTP基础RSTP引入背景STP所存在的问题RSTP对于STP的改进端口角色重新划分端口状态重新划分快速收敛机制:PA机制端口快速切换边缘端口的引入RSTP引入背景 STP协议虽然能够解决环路问题,但是由于网络拓扑收敛较慢,影响了用户通信质量ÿ…...

Linux操作系统学习(信号处理)
文章目录进程信号信号的产生方式(信号产生前)1. 硬件产生2.调用系统函数向进程发信号3.软件产生4.定位进程崩溃的代码(进程异常退出产生信号)信号保存的方式(信号产生中)获取pending表&&修改block表…...

CopyOnWriteArrayList 源码解读
一、CopyOnWriteArrayList 源码解读 在 JUC 中,对于 ArrayList 的线程安全用法,比较推崇于使用 CopyOnWriteArrayList ,那 CopyOnWriteArrayList是怎么解决线程安全问题的呢,本文带领大家一起解读下 CopyOnWriteArrayList 的源码…...

方法
方法方法(函数)一、课前问答二、方法和函数三、方法的参数3.1 单个参数3.2 多个参数四、方法的返回值五、方法的多级调用六、递归方法(函数) 一、课前问答 1、break和continue的区别 2、嵌套循环的执行流程 3、二进制有哪些运算&…...

C/C++实现发送邮件功能(附源码)
C++常用功能源码系列 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项目中拿来就用的效果,这样更好的服务于工作实践。 专栏介绍:专栏讲本人近10年后端开发常用的案例,以高质量的代码提取出来,并对其进行了介绍。…...

Java虚拟机JVM-运行时数据区域说明
及时编译器 HotSpot虚拟机中含有两个即时编译器,分别是编译耗时短但输出代码优化程度较低的客户端编译器(简称为C1)以及编译耗时长但输出代码优化质量也更高的服务端编译器(简称为C2),通常它们会在分层编译…...

修复电子管
年前在咸鱼捡漏买到了10根1G4G电子管,这是一种直热三极管,非常的少见。买回来的时候所有的灯丝都是通的,卖家说都是新的,库存货,但是外观实在是太糟糕了,看着就像被埋在垃圾场埋了几十年的那种,…...

【Java】反射机制和代理机制
目录一、反射1. 反射概念2. 反射的应用场景3. 反射机制的优缺点4. 反射实战获取 Class 对象的四种方式二、代理机制1. 代理模式2. 静态代理3. 动态代理3.1 JDK动态代理机制1. 介绍2.JDK 动态代理类使用步骤3. 代码示例3.2 CGLIB 动态代理机制1.介绍2.CGLIB 动态代理类使用步骤3…...

synchronized底层
Monitor概念一、Java对象头二、Monitor2.1、Monitor—工作原理2.2、Monitor工作原理—字节码角度2.2、synchronized进阶原理(优化)2.3、synchronized优化原理——轻量级锁2.4、synchronized优化原理——锁膨胀2.5、synchronized优化原理——自旋优化2.6、…...

数据结构:复杂度的练习(笔记)
数据结构:复杂度的练习(笔记) 例题一: 可以先给数组排序,然后再创建一个i值,让他循环一次一次,遍历这个排序后的数组,但如果用qsort函数进行排序,时间复杂度就和题目要求…...

JAVA练习69- 从前序与中序遍历序列构造二叉树
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 提示:这里可以添加本文要记录的大概内容: 3月5日练习内容 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目-从…...

brew安装问题
最近使用mac安装了Python和PyCharm,使用python中的绘制图像的turtle库后,执行报错: import _tkinter # If this fails your Python may not be configured for Tk ModuleNotFoundError: No module named _tkinter 查询后需在mac 命令行执行&…...

【数据挖掘与商务智能决策】第一章 数据分析与三重工具
numpy基础 numpy与数组 import numpy as np # 用np代替numpy,让代码更简洁 a [1, 2, 3, 4] # 创建列表a b np.array([1, 2, 3, 4]) #从列表ach print(a) print(b) print(type(a)) #打印a类型 print(type(b)) #打印b类型[1, 2, 3, 4] [1 2 3 4] <class ‘list’>…...

计算机底层:BDC码
计算机底层:BDC码 BDC码的作用: 人类喜欢十进制,而机器适合二进制,因此当机器要翻译二进制给人看时,就会进行二进制和十进制的转换,而常规的转换法(k*位权)太麻烦。因此就出现了不同…...

【C++】平衡二叉搜索(AVL)树的模拟实现
一、 AVL树的概念 map、multimap、set、multiset 在其文档介绍中可以发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树…...

[2019红帽杯]childRE
题目下载:下载 参考:re学习笔记(24)BUUCTF-re-[2019红帽杯]childRE_Forgo7ten的博客-CSDN博客 这道题涉及到c函数的修饰规则,按照规则来看应该是比较容易理解的。上面博客中有总结规则,可以学习一下。 载…...