当前位置: 首页 > news >正文

RAFT: Adapting Language Model to Domain Specific RAG

今天来介绍下伯克利大学3.15日新发的一篇paper,RAFT: Adapting Language Model to Domain Specific RAG

主要研究了如何构造训练数据来微调你的LLM,从而在LLM在垂直领域的RAG中表现更好。并且开源了代码:GitHub - ShishirPatil/gorilla: Gorilla: An API store for LLMs

主要工作:

1、Retrieval Augmented Fine Tuning (RAFT):RAFT是一种训练方法,旨在通过微调来适应特定领域的开卷考试设置,即领域特定的RAG。
2、区分文档类型:在训练数据中,区分“oracle”文档(包含问题答案的文档)和“distractor”文档(不包含答案相关信息的文档)。
3、链式思维风格答案:RAFT训练模型生成包含链式思维的答案,这些答案引用了上下文中的原始文档,并详细解释了如何基于引用得出结论。
4、处理干扰文档:在训练过程中,模型被训练以在存在干扰文档的情况下回答问题,这有助于提高模型在测试时对检索结果的鲁棒性。

 

训练数据是如何构造的?

其实作者在论文中没有明说,只是给了一个示例。笔者看代码搞清楚了这一过程。现在阐述如下。

1.对于一个pdf,先把pdf切分成chunk,也就是产生多个doc。

2.利用chatgpt4为每一个doc,生成多个query。

def generate_instructions_gen(chunk: Any, x: int = 5) -> list[str]:"""Generates `x` questions / use cases for `chunk`. Used when the input document is of general types `pdf`, `json`, or `txt`."""response = cli

相关文章:

RAFT: Adapting Language Model to Domain Specific RAG

今天来介绍下伯克利大学3.15日新发的一篇paper,RAFT: Adapting Language Model to Domain Specific RAG 主要研究了如何构造训练数据来微调你的LLM,从而在LLM在垂直领域的RAG中表现更好。并且开源了代码:GitHub - ShishirPatil/gorilla: Gorilla: An API store for LLMs 主…...

第十五届蓝桥杯第三期模拟赛第十题 ← 上楼梯

【问题描述】 小蓝要上一个楼梯,楼梯共有 n 级台阶(即小蓝总共要走 n 级)。小蓝每一步可以走 a 级、b 级或 c 级台阶。 请问小蓝总共有多少种方案能正好走到楼梯顶端?【输入格式】 输入的第一行包含一个整数 n 。 第二行包含三个整…...

第四题:星期一

题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 整个 20 世纪(1901 年 1 月 1 日至 2000 年 12 月 31 日之间),一共有多少个星期一?(不要告诉我你不知道今天是星期几…...

Mamba: Linear-Time Sequence Modeling with Selective State Spaces(论文笔记)

What can I say? 2024年我还能说什么? Mamba out! 曼巴出来了! 原文链接: [2312.00752] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (arxiv.org) 原文笔记: What: Mamba: Linear-Time …...

2024蓝桥杯每日一题(区间DP)

备战2024年蓝桥杯 -- 每日一题 Python大学A组 试题一:游戏 试题二:石子合并 试题三:密码脱落 试题四:能量项链 试题一:游戏 【题目描述】 玩家一和玩家二共同玩一个小游戏。给定一个包含 N 个…...

LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】

LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】 题目描述:解题思路一:看提示主要是用贪心和排序。那我们肯定是首先对coins排序。然后依次遍历coins[i],获取当前可以获取金额范围,和判断是否加入新硬币。判断规则如下…...

新书速递——《可解释AI实战(PyTorch版)》

本书旨在帮助你实施最新的可解释AI技术,以构建公平且可解释的AI系统。可解释AI是当今AI研究中的热门话题,但只有少数资源和指南涵盖了所有重要技术,这些技术对实践者来说非常有价值。本书旨在填补这一空白。 本书读者对象 本书既适合那些有兴…...

国产数据库中统计信息自动更新机制

数据库中统计信息描述的数据库中表和索引的大小数以及数据分布状况,统计信息的准确性对优化器选择执行计划时具有重要的参考意义。本文简要整理了下传统数据库和国产数据库中统计信息的自动更新机制,以加深了解。 1、数据库统计信息介绍 优化器是数据库…...

【C++】入门C++(中)

好的,我们继续,这是 C专栏的第二篇博客,还没读过上一篇博客可以进入我创建的专栏阅读 入门C(上)再回来哦~ 下面我们要讲的第一个概念就是函数重载 函数重载 1. 函数重载概念 什么是函数重载? 简单来说…...

javaIO

file类 一个File类的对象可以表示一个具体的文件或目录 mkdir 创建单级文件夹 mkdirs 创建多级文件夹 delete 删除一个文件夹时,文件夹里面必须是空的 listfiles 将文件夹的子集放到一个file类型的数组中 输入及输出的概念 输入input 输出output 把jav…...

睿尔曼超轻量仿人机械臂之复合机器人底盘介绍及接口调用

机器人移动平台是一个包含完整成熟的感知、认知和定位导航能力的轮式机器人底盘产品级平台,产品致力于为各行业细分市场的商用轮式服务机器人提供一站式移动机器人解决方案,让合作伙伴专注在核心业务/人机交互的实现。以下是我司产品双臂机器人以及复合升…...

用JSch实现远程传输文件并打包成jar

本文将简单介绍一下 JSch 这个Java的第三方库的一个简单用法,并以此为实例,讲解 IntelliJ 中打包成 jar 包的2种方式。 实现目标 我们的目标是,做出一个jar包,它能够实现类似于 scp 命令的远程传输文件的功能。用法如下&#xf…...

2023年第十四届蓝桥杯大赛软件类省赛C/C++研究生组真题(代码完整题解)

C题-翻转⭐ 标签:贪心 简述:如果 S 中存在子串 101 或者 010,就可以将其分别变为 111 和 000,操作可以无限重复。最少翻转多少次可以把 S 变成和 T 一样。 链接: 翻转 思路:要求步骤最少->S每个位置最多修改一次->从头开始遍历不匹配就翻转->翻转不了就-1 …...

力扣刷题Days28-第二题-11.盛水最多的容器(js)

目录 1,题目 2,代码 3,学习与总结 3.1思路回顾 1,如何遍历 2,算法流程 3.2剖析问题 1,题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, h…...

文生图大模型三部曲:DDPM、LDM、SD 详细讲解!

1、引言 跨模态大模型是指能够在不同感官模态(如视觉、语言、音频等)之间进行信息转换的大规模语言模型。当前图文跨模态大模型主要有: 文生图大模型:如 Stable Diffusion系列、DALL-E系列、Imagen等 图文匹配大模型:如CLIP、Chinese CLIP、…...

算法学习——LeetCode力扣动态规划篇10(583. 两个字符串的删除操作、72. 编辑距离、647. 回文子串、516. 最长回文子序列)

算法学习——LeetCode力扣动态规划篇10 583. 两个字符串的删除操作 583. 两个字符串的删除操作 - 力扣(LeetCode) 描述 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个…...

TASKPROMPTER

baseline模型的预训练权重就有1.6G! 多吓人呐,当时我就暂停下载了,不建议复现...

C之易错注意点转义字符,sizeof,scanf,printf

目录 前言 一:转义字符 1.转义字符顾名思义就是转换原来意思的字符 2.常见的转义字符 1.特殊\b 2. 特殊\ddd和\xdd 3.转义字符常错点----计算字符串长度 注意 : 如果出现\890,\921这些的不是属于\ddd类型的,,不是一个字符…...

等级保护测评无补偿因素的高风险安全问题判例(共23项需整改)

层面 控制点 要求项 安全问题 适用范围 充分条件 整改建议简要 安全物理环境 基础设施位置 应保证云计算基础设施位于中国境内 1.云计算基础设施物理位置不当 二级及以上 相关基础设施不在中国境内 云平台相关基础设施在中国境内部署 安全通信网络 网络架构 应…...

JavaScript笔记 09

目录 01 DOM操作事件的体验 02 获取元素对象的五种方式 03 事件中this指向问题 04循环绑定事件 05 DOM节点对象的常用操作 06 点亮盒子的案例 07 节点访问关系 08 设置和获取节点内容的属性 09 以上内容的小总结 01 DOM操作事件的体验 js本身是受事件驱动的脚本语言 什…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...