当前位置: 首页 > news >正文

[大模型] BlueLM-7B-Chat WebDemo 部署

BlueLM-7B-Chat WebDemo 部署

模型介绍

BlueLM-7B 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,参数规模为 70 亿。BlueLM-7B 在 C-Eval 和 CMMLU 上均取得领先结果,对比同尺寸开源模型中具有较强的竞争力(截止11月1号)。本次发布共包含 7B 模型的 Base 和 Chat 两个版本。

模型下载链接见:

基座模型对齐模型
🤗 BlueLM-7B-Base🤗 BlueLM-7B-Chat
🤗 BlueLM-7B-Base-32K🤗 BlueLM-7B-Chat-32K
🤗 BlueLM-7B-Chat-4bits

环境准备

在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>1.11.0–>3.8(ubuntu20.04)–>11.3,Cuda版本在11.3以上都可以。

在这里插入图片描述

接下来打开刚刚租用服务器的 JupyterLab(也可以使用vscode ssh远程连接服务器),并且打开其中的终端开始环境配置、模型下载和运行 demo。

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 设置pip镜像源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# 安装软件依赖
pip install modelscope==1.11.0
pip install transformers==4.37.0
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4

模型下载

使用Modelscope API 下载BlueLM-7B-Chat模型,模型路径为/root/autodl-tmp。在 /root/autodl-tmp 下创建model_download.py文件内容如下:

from modelscope import snapshot_download
model_dir = snapshot_download("vivo-ai/BlueLM-7B-Chat", cache_dir='/root/autodl-tmp', revision="master")

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容:

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
import torch
import streamlit as st# 在侧边栏中创建一个标题和一个链接
with st.sidebar:st.markdown("## BlueLM-7B-Chat")"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512max_length = st.slider("max_length", 0, 1024, 512, step=1)# 创建一个标题和一个副标题
st.title("💬 BlueLM Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/autodl-tvivo-ai/BlueLM-7B-Chat'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)# 从预训练的模型中获取模型,并设置模型参数model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True,torch_dtype=torch.bfloat16,  device_map="auto")# 从预训练的模型中获取生成配置model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)# 设置生成配置的pad_token_id为生成配置的eos_token_idmodel.generation_config.pad_token_id = model.generation_config.eos_token_id# 设置模型为评估模式model.eval()  return tokenizer, model# 加载BlueLM的model和tokenizer
tokenizer, model = get_model()def build_prompt(messages, prompt):"""构建会话提示信息。参数:messages - 包含会话历史的元组列表,每个元组是(用户查询,AI响应)。prompt - 当前用户输入的文本。返回值:res - 构建好的包含会话历史和当前用户提示的字符串。"""res = ""# 遍历历史消息,构建会话历史字符串for query, response in messages:res += f"[|Human|]:{query}[|AI|]:{response}</s>"# 添加当前用户提示res += f"[|Human|]:{prompt}[|AI|]:"return resclass BlueLMStreamer(TextStreamer):"""BlueLM流式处理类,用于处理模型的输入输出流。参数:tokenizer - 用于分词和反分词的tokenizer实例。"""def __init__(self, tokenizer: "AutoTokenizer"):self.tokenizer = tokenizerself.tokenIds = []self.prompt = ""self.response = ""self.first = Truedef put(self, value):"""添加token id到流中。参数:value - 要添加的token id。"""if self.first:self.first = Falsereturnself.tokenIds.append(value.item())# 将token ids解码为文本text = tokenizer.decode(self.tokenIds, skip_special_tokens=True)def end(self):"""结束流处理,将当前流中的文本作为响应,并重置流状态。"""self.first = True# 将token ids解码为文本text = tokenizer.decode(self.tokenIds, skip_special_tokens=True)self.response = textself.tokenIds = []# 初始化session状态,如果messages不存在则初始化为空,并添加欢迎信息
if "messages" not in st.session_state:st.session_state.messages = []st.session_state.messages.append(("", "你好,有什么可以帮助你吗?"))# 遍历并显示历史消息
for msg in st.session_state.messages:st.chat_message("assistant").write(msg[1])# 处理用户输入
if prompt_text := st.chat_input():prompt_text = prompt_text.strip()st.chat_message("user").write(prompt_text)messages = st.session_state.messages# 使用BlueLMStreamer处理流式模型输入streamer = BlueLMStreamer(tokenizer=tokenizer)# 构建当前会话的提示信息prompt = build_prompt(messages=messages, prompt=prompt_text)# 将提示信息编码为模型输入inputs_tensor = tokenizer(prompt, return_tensors="pt")inputs_tensor = inputs_tensor.to("cuda:0")input_ids = inputs_tensor["input_ids"]# 通过模型生成响应outputs = model.generate(input_ids=input_ids, max_new_tokens=max_length, streamer=streamer)# 将模型的响应显示给用户st.chat_message("assistant").write(streamer.response)# 更新会话历史st.session_state.messages.append((prompt_text, streamer.response))

运行 demo

在终端中运行以下命令,启动streamlit服务,并按照 autodl 的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

如下所示:

在这里插入图片描述

相关文章:

[大模型] BlueLM-7B-Chat WebDemo 部署

BlueLM-7B-Chat WebDemo 部署 模型介绍 BlueLM-7B 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型&#xff0c;参数规模为 70 亿。BlueLM-7B 在 C-Eval 和 CMMLU 上均取得领先结果&#xff0c;对比同尺寸开源模型中具有较强的竞争力(截止11月1号)。本次发布共包含 7…...

一文了解ERC404协议

一、ERC404基础讲解 1、什么是ERC404协议 ERC404协议是一种实验性的、混合的ERC20/ERC721实现的&#xff0c;具有原生流动性和碎片化的协议。即该协议可让NFT像代币一样进行拆分交易。是一个图币的互换协议。具有原生流动性和碎片化的协议。 这意味着通过 ERC404 协议&#xf…...

iOS cocoapods pod FrozenError and RuntimeError

0x00 报错日志 /Library/Ruby/Gems/2.6.0/gems/cocoapods-1.12.0/lib/cocoapods/user_interface/error_report.rb:34:in force_encoding: cant modify frozen String (FrozenError)from /Library/Ruby/Gems/2.6.0/gems/cocoapods-1.12.0/lib/cocoapods/user_interface/error_r…...

【鸿蒙开发】第二十章 Camera相机服务

1 简介 开发者通过调用Camera Kit(相机服务)提供的接口可以开发相机应用&#xff0c;应用通过访问和操作相机硬件&#xff0c;实现基础操作&#xff0c;如预览、拍照和录像&#xff1b;还可以通过接口组合完成更多操作&#xff0c;如控制闪光灯和曝光时间、对焦或调焦等。 2 …...

JS阅读笔记

myweb3.html <video id"video" width"400" height"300" autoplay></video> <button id"capture-btn">拍摄图片</button> <canvas id"canvas" width"400" height"300">&…...

基于spring boot的留守儿童爱心管理系统

基于spring boot的留守儿童爱心管理系统设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开…...

python输入某年某月某日判断这一天是这一年的第几天

如何使用python实现输入某年某月某日判断这一天是这一年的第几天 from datetime import datetime #引入日期类 def is_leap_year(year):"""判断是否为闰年"""return (year % 4 0 and year % 100 ! 0) or (year % 400 0)# 根据年份和月份返回当…...

docker 上达梦导入dump文件报错:本地编码:PG GBK,导入女件编码:PGGB18030

解决方案&#xff1a; 第一步进入达梦数据容器内部 docker exec -it fc316f88caff /bin/bash 第二步&#xff1a;在容器中 /opt/dmdbms/bin目录下 执行命令 cd /opt/dmdbms/bin./dimp USERIDSYSDBA/SYSDBA001 FILE/opt/dmdbms/ZFJG_LJ20240407.dmp SCHEMASZFJG_LJUSERIDSYSD…...

一起学习python——基础篇(19)

今天来说一下python的如何修改文件名称、获取文件大小、读取文中指定的某一行内容。 1、修改文件名称&#xff1a; import os testPath"D:/pythonFile/test.txt" testPath2"D:/pythonFile/test2.txt" #修改文件名称使用rename方法&#xff0c; #第一个参…...

数模 初见数建

文章目录 初见数学建模1.1 数学建模是什么1.2 数学建模的概述1.3 如何学习数学建模---分模块化1.4 数学建模前提了解1.5 数学建模的六个步骤1.6 如何备战建模比赛1.7 数学建模赛题类型1.8 数学建模算法体系概述 初见数学建模 1.1 数学建模是什么 1.原型与模型 原型&#xff…...

windows系统搭建OCR半自动标注工具PaddleOCR

深度学习 文章目录 深度学习前言一、环境搭建准备方式1&#xff1a;安装Anaconda搭建1. Anaconda下载地址: [点击](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?CM&OD)2. 创建新的conda环境 方式2. 直接安装python 二、安装CPU版本1. 安装PaddlePaddle2、安装…...

01、ArcGIS For JavaScript 4.29对3DTiles数据的支持

综述 Cesium从1.99版本开始支持I3S服务的加载&#xff0c;到目前位置&#xff0c;已经支持I3S的倾斜模型、3D Object模型以及属性查询的支持。Cesium1.115又对I3S标准的Building数据实现了加载支持。而ArcGIS之前一直没有跨越对3DTiles数据的支持&#xff0c;所以在一些开发过…...

Spark_SparkSql写入Oracle_Undefined function.....将长字符串写入Oracle中方法..

在使用Spark编写代码将读库处理然后写入Oracle中遇到了诸多小bug,很磨人&#xff0c;好在解决了。shit!! 实测1&#xff1a;TO_CLOB(a3) 代码样例 --这是一个sparksql写入hive的一个小逻辑&#xff0c;我脱敏了噻 SELECT a1, a2, TO_CLOB(a3) AS clob_data, TO_DATE(a4) AS …...

2023数据要素白皮书(免费下载)

【1】关注本公众号&#xff0c;转发当前文章到微信朋友圈 【2】私信发送 【2023年数据资源入表白皮书】 【3】获取本方案PDF下载链接&#xff0c;直接下载即可。 如需下载本方案PPT原格式&#xff0c;请加入微信扫描以下方案驿站知识星球&#xff0c;获取上万份PPT解决方案&a…...

kafka学习记录

文章目录 windows单机版kafka搭建步骤主题的增删改查操作消息的生产与消费 Windows集群版kafka搭建步骤 prettyZoo 尚硅谷Kafka教程&#xff0c;2024新版kafka视频&#xff0c;零基础入门到实战 【尚硅谷】Kafka3.x教程&#xff08;从入门到调优&#xff0c;深入全面&#xff0…...

无线网络2.4和5G的区别

无线网络2.4和5的区别 无线网络2.4GHz和5GHz的主要区别在于频率、覆盖范围、传输速度、干扰能力和穿透性。以下是详细介绍&#xff1a;12 频率不同。2.4GHz的频率较低&#xff0c;而5GHz的频率较高。频率越低&#xff0c;信号在传播过程中的损失越小&#xff0c;因此覆盖范围…...

大模型笔记:Prompt tuning

1 NLP模型的几个阶段 1.1 第一阶段&#xff08;在深度学习出现之前&#xff09; 通常聚焦于特征工程&#xff08;feature engineering&#xff09;利用领域知识从数据中提取好的特征 1.2 第二阶段&#xff08;在深度学习出现之后&#xff09; 特征可以从数据中习得——>…...

【Ambari】Ansible自动化部署大数据集群

目录 一&#xff0e;版本说明和介绍信息 1.1 大数据组件版本 1.2 Apache Components 1.3 Databases支持版本 二&#xff0e;安装包上传和说明 三&#xff0e;服务器基础环境配置 3.1global配置修改 3.2主机名映射配置 3.3免密用户名密码配置 3.4 ansible安装 四. 安…...

RTSP/Onvif视频安防监控平台EasyNVR调用接口返回匿名用户名和密码的原因排查

视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif协议接入&#xff0c;并能对接入的视频流进行处理与多端分发&#xff0c;包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。平台拓展性强、支持二次开发与集成&#xff0c;可应用在景区、校园、水利、社区、工地等场…...

opencv基础图行展示

"""试用opencv创建画布并显示矩形框&#xff08;适用于目标检测图像可视化&#xff09; """ # 创建一个黑色的画布&#xff0c;图像格式(BGR) img np.zeros((512, 512, 3), np.uint8)# 画一个矩形&#xff1a;给定左上角和右下角坐标&#xff0…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...