科研学习|科研软件——如何使用SmartPLS软件进行结构方程建模
SmartPLS是一种用于结构方程建模(SEM)的软件,它可以用于定量研究,尤其是在商业和社会科学领域中,如市场研究、管理研究、心理学研究等。
一、准备数据
在使用SmartPLS之前,您需要准备一个符合要求的数据集。数据集需要包含至少两个变量,并且应该是连续性数据。如果您的数据集不符合这些要求,您需要对其进行处理,使其符合标准。
注意:
- 如“年龄”一样的连续数据可以,“教育水平”一样的定序数据也可以
- 数据集最好使用utf-8编码、逗号分隔符、.csv文件
二、软件设置
- “SmartPLS”选项
- “perferences(偏好设置)”
- “语言” --> “设置为中文简体”
三、创建新项目
- 打开SmartPLS软件,点击“New Project(新项目)”按钮创建新项目
- 选择“导入数据文件”,调整“文件设置”、“变量类型(连续、二元、名义等)”和“数据缺失值处理”等。
- 点击“OK”按钮保存项目。


四、构建模型
- 在新建项目后,点击主界面上的“创建模型”选项卡
- 选择要构建的“模型(型号)”、设定“型号名称”,点击保存

五、添加指标
- 鼠标左键长按左侧变量名称,并将其拖拽到右侧空白工作区
- 鼠标右键变量,进行“编辑设置”

五、添加路径
- 在添加指标后,您需要为模型中的潜在变量之间建立路径。在主界面上点击“连接”选项卡,添加路径。
- 选择路径的起点和终点,并设置相关的权重。

六、运行分析
- 完成模型的构建后,您可以点击主界面上的“运算”选项卡,然后选择所需的分析类型,如“PLS Algorithm”或“Bootstrapping”。
- SmartPLS将计算您的模型,并输出相关的统计信息和图表。


七、分析结果
分析完成后,您可以在主界面上查看分析结果。这些结果包括:
- 路径系数
- R2值
- 共线性统计(VIF)
- 指标相关性等等。
通过这些结果,您可以了解模型中各个变量之间的关系,并确定哪些变量对于解释因变量具有更大的影响力。

相关文章:
科研学习|科研软件——如何使用SmartPLS软件进行结构方程建模
SmartPLS是一种用于结构方程建模(SEM)的软件,它可以用于定量研究,尤其是在商业和社会科学领域中,如市场研究、管理研究、心理学研究等。 一、准备数据 在使用SmartPLS之前,您需要准备一个符合要求的数据集。…...
实用工具系列-ADB使用方式
作者持续关注 WPS二次开发专题系列,持续为大家带来更多有价值的WPS开发技术细节,如果能够帮助到您,请帮忙来个一键三连,更多问题请联系我(WPS二次开发QQ群:250325397),摸鱼吹牛嗨起来࿰…...
计算机网络书籍--《网络是怎样连接的》阅读笔记
第一章 浏览器生成信息 1.1 生成HTTP请求信息 1.1.1 URL Uniform Resource Locator, 统一资源定位符。就是网址。 不同的URL能够用来判断使用哪种功能来访问相应的数据,比如访问Web服务器就要用”http:”,而访问FTP服务器用”ftp:”。 FTPÿ…...
antd+vue——datepicker日期控件——禁用日期功能
需求:今天之前的日期禁用 <a-date-pickerv-model.trim"formNE.deliveryTime":disabled-date"disabledDate"valueFormat"YYYY-MM-DD"allowClearstyle"width: 100%" />禁用日期的范围: //时间范围 disab…...
技术分享 | Appium 用例录制
下载及安装 下载地址: github.com/appium/appi… 下载对应系统的 Appium 版本,安装完成之后,点击 “Start Server”,就启动了 Appium Server。 在启动成功页面点击右上角的放大镜,进入到创建 Session 页面。配置好…...
[蓝桥杯 2018 省 A] 付账问题
【蓝桥杯】付账问题 [蓝桥杯 2018 省 A] 付账问题 题目描述 几个人一起出去吃饭是常有的事。但在结帐的时候,常常会出现一些争执。 现在有 n n n 个人出去吃饭,他们总共消费了 S S S 元。其中第 i i i 个人带了 a i a_i ai 元。幸运的是&#…...
设计模式|装饰器模式(Decorator Pattern)
文章目录 结构优缺点优点缺点适用场景示例装饰器模式(Decorator Pattern)是一种结构型设计模式,它允许在不改变原始对象的基础上,动态地给对象添加新的功能或责任。这种模式是通过创建一个包装对象,也就是装饰器,来包裹真实的对象,然后在装饰器中添加新的行为或功能。这…...
发作性睡病有性别差异吗?
发作性睡病是一种特殊的睡眠障碍,以不可控制的嗜睡、猝倒发作、睡眠瘫痪、入睡前幻觉以及夜间睡眠紊乱为主要临床特点。关于发作性睡病是否存在性别差异,不同的研究和报道给出了不同的结论。 一方面,从生理角度来看,男性和女性在…...
ppt从零基础到高手【办公】
第一章:文字排版篇01演示文稿内容基密02文字操作规范03文字排版处理04复习&作业解析第二章:图形图片图表篇05图形化表达06图片艺术化07轻松玩转图表08高效工具&母版统一管理09复习&作业解析10轻松一刻-文字图形小技巧速学第三章:…...
文件上传下载
文章目录 文件上传下载文件上传文件下载 文件上传下载 HTTP请求会包含一个请求头,其中"Content-Type"字段告诉服务器正在发送什么类型的数据。根据发送的数据类型,浏览器和服务器会采取适应的处理方式。 "multipart/form-data"是一…...
C++11 新特性:新增算法
C11 在标准库中引入了一系列新的算法,这些新增的算法使我们的代码写起来更简洁方便。 下面是 C11 中新增加的一些重要算法的简要描述和使用方法: 1、非修改序列操作 std::all_of:检查范围内的所有元素是否都满足指定的谓词。std::any_of&a…...
c/c++普通for循环学习
学习一下 for 循环的几种不同方式,了解一下原理及差异 完整的测试代码参考 GitHub :for 循环测试代码 1 常用形态 对于 for 循环来说,最常用的形态如下 for (表达式1; 表达式2; 表达式3) {// code }流程图如下: 编写测试代码…...
操作系统组成部分
从1946年诞生第一台电子计算机。 冯诺依曼结构 冯诺依曼是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。 常见的操作系统有三种类型 单用户单任务操作系统:只支持一个用户和一个任务的执行,如DOS;单用…...
深入理解DES算法:原理、实现与应用
title: 深入理解DES算法:原理、实现与应用 date: 2024/4/14 21:30:21 updated: 2024/4/14 21:30:21 tags: DES加密对称加密分组密码密钥管理S盒P盒安全性分析替代算法 DES算法简介 历史 DES(Data Encryption Standard)算法是由IBM研发&…...
# 达梦sql查询 Sql 优化
达梦sql查询 Sql 优化 文章目录 达梦sql查询 Sql 优化注意点测试数据单表查询 Sort 语句优化优化过程 多表关联SORT 优化函数索引的使用 注意点 关于优化过程中工具的选用,推荐使用自带的DM Manage,其它工具在查看执行计划等时候不明确在执行计划中命中…...
Linux下SPI驱动:SPI设备驱动简介
一. 简介 Linux下的SPI 驱动框架和 I2C 很类似,都分为主机控制器驱动和设备驱动,主机控制器也就是 SOC的 SPI 控制器接口,SPI设备驱动也就是所操作的SPI设备的驱动。 本文来学习一下Linux下SPI设备驱动。 二. Linux下SPI驱动:SP…...
【简明图文教程】Node.js的下载、安装、环境配置及测试
文章目录 前言下载Node.js安装Node.js配置Node.js配置环境变量测试后言 前言 本教程适用于小白第一次从零开始进行Node.js的下载、安装、环境配置及测试。 如果你之前已经安装过了Node.js或删除掉了Node.js想重新安装,需要先参考以下博客进行处理后,再根…...
共模电感饱和与哪些参数有关?这些参数是如何影响共模电感的?
在做一个变频器项目,遇到一个问题,在30Hz重载超过一定1小时,CE测试结果超出限制,查找原因最终发现EMI filter内的共模电感加热,fail现象可以复现。最终增大Y电容把问题解决了。由此问题引申出一个问题,到底…...
儿童护眼台灯怎么选?五款必选的高口碑护眼台灯推荐
儿童台灯,想必大家都不会陌生了,是一种学生频繁使用的小灯具,一般指放在桌面用的有底座的电灯。随着近年来儿童青少年的视力急速下滑,很多家长都会选择给孩子选择一款合适的护眼台灯,以便孩子夜晚学习能有个好的照明环…...
前端小技巧之轮播图
文章目录 功能htmlcssjavaScript图片 设置了一点小难度,不理解的话,是不能套用的哦!!! (下方的圆圈与图片数量不统一,而且宽度是固定的) 下次写一些直接套用的,不整这些麻…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
【java】【服务器】线程上下文丢失 是指什么
目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失? 直观示例说明 为什么上下文如此重要? 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程,代码应该如何实现 推荐方案:使用 ManagedE…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
多模态大语言模型arxiv论文略读(112)
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文标题:Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文作者:Jea…...
