AI大模型探索之路-实战篇12: 构建互动式Agent智能数据分析平台:实现多轮对话控制
系列篇章💥
AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研
AI大模型探索之路-实战篇5:探索Open Interpreter开放代码解释器调研
AI大模型探索之路-实战篇6:掌握Function Calling的详细流程
AI大模型探索之路-实战篇7:Function Calling技术实战自动生成函数
AI大模型探索之路-实战篇8:多轮对话与Function Calling技术应用
AI大模型探索之路-实战篇9:探究Agent智能数据分析平台的架构与功能
AI大模型探索之路-实战篇10:数据预处理的艺术:构建Agent智能数据分析平台的基础
AI大模型探索之路-实战篇11: Function Calling技术整合:强化Agent智能数据分析平台功能
目录
- 系列篇章💥
- 一、前言
- 二、引入背景知识库
- 1、定义OpenAI客户端
- 2、定义工具函数生成器
- 3、两次大模型API调用封装
- 4、user_demographics数据查询服务封装
- 5、user_demographics函数信息生成测试
- 6、第一次数据查询对话测试
- 7、读取数据字典
- 8、第二次数据查询对话测试
- 9、数据库基本信息查询测试
- 10、数据分析调用测试
- 三、实现交互确认
- 1、定义数据库基本信息获取函数
- 2、函数信息生成测试检查:
- 3、数据分析测试
- 4、定义SQL提取函数
- 5、两次次大模型API两次调用封装改造
- 6、定义消息列表
- 7、数据查询分析测试1
- 8、数据查询分析测试2
- 9、数据查询分析测试3
- 四、实现完整的多轮对话效果
- 五、结语
一、前言
在Agent智能数据分析平台的实战开发中,继我们之前关于Function Calling技术整合的讨论之后,本文将专注于实现一个核心功能——多轮对话控制系统。这一机制能够让用户通过自然语言与系统进行连续的交流,从而更准确、更高效地完成数据分析任务。
二、引入背景知识库
引入数据字典知识,作为大模型对话的背景知识库。
1、定义OpenAI客户端
定义大模型客户端,用于与大模型交互对话
import openai
import os
import numpy as np
import pandas as pd
import json
import io
from openai import OpenAI
import inspect
import pymysqlopenai.api_key = os.getenv("OPENAI_API_KEY")client = OpenAI(api_key=openai.api_key)
2、定义工具函数生成器
定义一个函数,用于自动生成function calling功能需要的,工具函数信息体
def auto_functions(functions_list):"""Chat模型的functions参数编写函数:param functions_list: 包含一个或者多个函数对象的列表;:return:满足Chat模型functions参数要求的functions对象"""def functions_generate(functions_list):# 创建空列表,用于保存每个函数的描述字典functions = []# 对每个外部函数进行循环for function in functions_list:# 读取函数对象的函数说明function_description = inspect.getdoc(function)# 读取函数的函数名字符串function_name = function.__name__system_prompt = '以下是某的函数说明:%s' % function_descriptionuser_prompt = '根据这个函数的函数说明,请帮我创建一个JSON格式的字典,这个字典有如下5点要求:\1.字典总共有三个键值对;\2.第一个键值对的Key是字符串name,value是该函数的名字:%s,也是字符串;\3.第二个键值对的Key是字符串description,value是该函数的函数的功能说明,也是字符串;\4.第三个键值对的Key是字符串parameters,value是一个JSON Schema对象,用于说明该函数的参数输入规范。\5.输出结果必须是一个JSON格式的字典,只输出这个字典即可,前后不需要任何前后修饰或说明的语句' % function_nameresponse = client.chat.completions.create(model="gpt-3.5-turbo",messages=[{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}])json_function_description=json.loads(response.choices[0].message.content.replace("```","").replace("json",""))json_str={"type": "function","function":json_function_description}functions.append(json_str)return functionsmax_attempts = 4attempts = 0while attempts < max_attempts:try:functions = functions_generate(functions_list)break # 如果代码成功执行,跳出循环except Exception as e:attempts += 1 # 增加尝试次数print("发生错误:", e)if attempts == max_attempts:print("已达到最大尝试次数,程序终止。")raise # 重新引发最后一个异常else:print("正在重新运行...")return functions
3、两次大模型API调用封装
封装funcation calling中两次大模型API得调用
def run_conversation(messages, functions_list=None, model="gpt-3.5-turbo"):"""能够自动执行外部函数调用的对话模型:param messages: 必要参数,字典类型,输入到Chat模型的messages参数对象:param functions_list: 可选参数,默认为None,可以设置为包含全部外部函数的列表对象:param model: Chat模型,可选参数,默认模型为gpt-3.5-turbo:return:Chat模型输出结果"""# 如果没有外部函数库,则执行普通的对话任务if functions_list == None:response = client.chat.completions.create(model=model,messages=messages,)response_message = response.choices[0].messagefinal_response = response_message.content# 若存在外部函数库,则需要灵活选取外部函数并进行回答else:# 创建functions对象tools = auto_functions(functions_list)# 创建外部函数库字典available_functions = {func.__name__: func for func in functions_list}# 第一次调用大模型response = client.chat.completions.create(model=model,messages=messages,tools=tools,tool_choice="auto", )response_message = response.choices[0].messagetool_calls = response_message.tool_callsif tool_calls:messages.append(response_message) for tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(**function_args)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,}) ## 第二次调用模型second_response = client.chat.completions.create(model=model,messages=messages,) # 获取最终结果final_response = second_response.choices[0].message.contentelse:final_response = response_message.contentreturn final_response
4、user_demographics数据查询服务封装
定义一个get_user_demographics函数,用于获取user_demographics 表的相关信息
def get_user_demographics(sql_query):"""用户获取user_demographics 表的相关信息:param sql_query: 字符串形式的SQL语句:return SQL查询的user_demographics 表的相关信息"""mysql_pw="iquery_agent"connection = pymysql.connect(host='localhost', # 数据库地址user='iquery_agent', # 数据库用户名passwd=mysql_pw, # 数据库密码db='iquery', # 数据库名charset='utf8' # 字符集选择utf8 )try:with connection.cursor() as cursor:sql = sql_querycursor.execute(sql)results = cursor.fetchall()finally:cursor.close()column_names = [desc[0] for desc in cursor.description]# 使用results和column_names创建DataFramedf = pd.DataFrame(results, columns=column_names)return df.to_json(orient = "records")
5、user_demographics函数信息生成测试
使用工具函数生成器,对测试是否能够正常生成user_demographics相关数据查询的工具函数信息
#定义工具函数列表(当前只有user_demographics信息获取的函数)
functions_list = [get_user_demographics]#user_demographics相关数据查询的工具函数信息,生成测试
tools = auto_functions(functions_list)
tools
生成的函数信息如下:

注意:结构生成不一定正确,大模型缺少稳定性;可能需要多次调用测试;也可以再生成函数中,加入校验;比如:如果缺失关键key、value,就让大模型重新生成。
6、第一次数据查询对话测试
使用自然语言对话的方式,进行数据查询分析
messages=[{"role": "user", "content": "请问user_demographics表中个人属性为老年男性的数据总共有多少条?"}]response = client.chat.completions.create(model="gpt-3.5-turbo",messages=messages,tools=tools,tool_choice="auto", )response.choices[0].message
输出:
ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_5VK3ywSsn76wNBfAEc17FaWr', function=Function(arguments='{"sql_query":"SELECT COUNT(*) FROM user_demographics WHERE age >= 60 AND gender = \'male\'"}', name='get_user_demographics'), type='function')])
可以从结果中检查大模型是否正常找到自己生成的工具函数,以及生成的相关SQL是否正确;
查询SQL中使用了年龄大于60岁,来查询老年人。
7、读取数据字典
读取本地的数据字典
# 打开并读取Markdown文件
with open('/root/autodl-tmp/iquery项目/data/数据字典/iquery数据字典.md', 'r', encoding='utf-8') as f:md_content = f.read()md_content
输出
'# iquery数据字典:iquery数据库数据字典\n\n本数据字典记录了iquery数据库中各张数据表的基本情况。\n\n## 1.user_demographics数据表\n\n- 基本解释\n\n \u200b\t\tuser_demographics数据表记录了电信用户的个人基本情况,主要涵盖客户基本生物属性,包括性别、年龄状况、是否结婚以及是否经济独立等。\n\n- 数据来源\n\n \u200b\tuser_demographics数据集由一线业务人员人工采集记录,并且通过回访确认相关信息,数据集的准确性和可信度都非常高。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_demographics数据表主键 | | 由数字和字母组成的 | VARCHAR(255) |\n| gender | 用户的性别 | Female, Male | Female (女性), Male (男性) | VARCHAR(255) |\n| SeniorCitizen | 是否为老人 | 0, 1 | 0 (不是), 1 (是) | INT |\n| Partner | 用户是否有伴侣 | Yes, No | Yes (有), No (没有) | VARCHAR(255) |\n| Dependents | 用户经济是否独立,往往用于判断用户是否已经成年 | No, Yes | Yes (有), No (没有) | VARCHAR(255) |\n\n## 2.user_services数据表\n\n- 基本解释\n\n \u200b user_services数据表记录了每位用户订购电信服务的基本情况,截至目前,电信服务商提供了种类多样的服务,包括电话类服务和网络类服务等,本数据集表记录了每位用户订阅电信服务的基本情况。\n\n- 数据来源\n\n \u200b\t\tuser_services数据表由后台系统自动创建生成,并未经过人工校验。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_services数据表主键 | | 由数字和字母组成的 | VARCHAR(255) |\n| PhoneService | 用户是否有电话服务 | No, Yes | Yes (有), No (没有) | VARCHAR(255) |\n| MultipleLines | 用户是否开通了多条电话业务 | No phone service, No, Yes | Yes (有多条电话线业务), No (没有多条电话线业务), No phone service (没有电话服务) | VARCHAR(255) |\n| InternetService | 用户的互联网服务类型 | DSL, Fiber optic, No | DSL (DSL), Fiber optic (光纤), No (没有) | VARCHAR(255) |\n| OnlineSecurity | 是否开通网络安全服务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| OnlineBackup | 是否开通在线备份服务 | Yes, No, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| DeviceProtection | 是否开通设备保护服务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| TechSupport | 是否开通技术支持业务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| StreamingTV | 是否开通网络电视 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| StreamingMovies | 是否开通网络电影 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n\n## 3.user_payments数据表\n\n- 基本解释\n\n \u200b\t\tuser_payments数据表记录了每一位用户支付状况,既包括用户的支付方式和合同类型,同时也包含用户具体支付金额,包括月付金额和总金额等。\n\n- 数据来源\n\n \u200b\t\tuser_payments数据表由后台自动记录生成,并未经过校验。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_payments数据表主键 | | 由数字和字母组成的 | VARCHAR(255) |\n| Contract | 合同类型 | Month-to-month, One year, Two year | Month-to-month (月付), One year (一年付), Two year (两年付) | VARCHAR(255) |\n| PaperlessBilling | 是否无纸化账单 | Yes, No | Yes (是), No (否) | VARCHAR(255) |\n| PaymentMethod | 支付方式 | Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic) | Electronic check (电子检查), Mailed check (邮寄支票), Bank transfer (automatic) (银行转账), Credit card (automatic) (信用卡) | VARCHAR(255) |\n| MonthlyCharges | 月费用 | | 用户平均每月支付费用 | FLOAT |\n| TotalCharges | 总费用 | | 截至目前用户总消费金额 | VARCHAR(255) |\n\n## 4.user_churn\n\n- 基本解释\n\n \u200b\t\tuser_churn数据表记录了当前用户流失情况。\n\n- 数据来源\n\n \u200b\t\tuser_churn数据表由后台自动创建并记录,当合同截至后但用户未续费,则判断该用户目前处于流失状态。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_churn数据表主键 | | 由数字和字母组成的 | VARCHAR(255) |\n| Churn | 用户是否流失 | No, Yes | Yes (是), No (否) | VARCHAR(255) |\n\n'
8、第二次数据查询对话测试
将数据字典作为背景知识,再次使用自然语言对话的方式,进行数据查询分析
messages=[{"role": "system", "content": md_content}, {"role": "user", "content": "请问user_demographics表中个人属性为老年男性的数据总共有多少条?"}
]
response = client.chat.completions.create(model="gpt-3.5-turbo",messages=messages,tools=tools,tool_choice="auto", )response.choices[0].message
输出:
ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_e4LEDDcytWdGUx0m98plDpUa', function=Function(arguments='{"sql_query":"SELECT * FROM user_demographics WHERE SeniorCitizen = 1 AND gender = \'Male\'"}', name='get_user_demographics'), type='function')])
通过输出结果可以看到,这一次数据查询中使用了SeniorCitizen 字段,因为背景知识中,这个字段是用来标识老人的,不需要通过年龄判断。

9、数据库基本信息查询测试
调用大模型API查询数据库的基本情况信息
messages=[{"role": "system", "content": md_content}, {"role": "user", "content": "请帮我介绍下iquery这个数据库的基本情况"}
]
response = client.chat.completions.create(model="gpt-3.5-turbo",messages=messages,)response.choices[0].message.content
输出:
'iquery数据库是一个用于电信用户数据分析的数据库,主要包括了四张数据表:user_demographics、user_services、user_payments和user_churn。这些数据表记录了电信用户的个人基本情况、订购的电信服务情况、支付情况以及流失情况。用户可以通过iquery数据库中的数据来进行用户行为分析、用户流失预测、产品定价优化等工作。每张数据表都有各自的字段说明,方便用户了解和利用数据库中的数据。'
10、数据分析调用测试
让大模型帮忙分析user_demographics数据表和user_services数据表的数据可信度。
messages=[{"role": "system", "content": md_content}, {"role": "user", "content": "user_demographics数据表和user_services数据表哪张表的数据可信度更高呢?"}
]
response = client.chat.completions.create(model="gpt-3.5-turbo",messages=messages,)print(response.choices[0].message.content)
输出:
根据描述,user_demographics数据表由一线业务人员人工采集记录,并通过回访确认相关信息,数据集的准确性和可信度都非常高。而user_services数据表由后台系统自动生成,并未经过人工校验。因此,user_demographics数据表的数据可信度更高。
三、实现交互确认
在数据查询分析前,让大模型输出将要执行的SQL,让用户确认检查;同时咨询是否需要执行
1、定义数据库基本信息获取函数
定义一个获取数据库基本信息的工具函数
def sql_inter(sql_query):"""用于获取iquery数据库中各张表的有关相关信息,\核心功能是将输入的SQL代码传输至iquery数据库所在的MySQL环境中进行运行,\并最终返回SQL代码运行结果。需要注意的是,本函数是借助pymysql来连接MySQL数据库。:param sql_query: 字符串形式的SQL查询语句,用于执行对MySQL中iquery数据库中各张表进行查询,并获得各表中的各类相关信息:return:sql_query在MySQL中的运行结果。"""mysql_pw = "iquery_agent"connection = pymysql.connect(host='localhost', # 数据库地址user='iquery_agent', # 数据库用户名passwd=mysql_pw, # 数据库密码db='iquery', # 数据库名charset='utf8' # 字符集选择utf8)try:with connection.cursor() as cursor:# SQL查询语句sql = sql_querycursor.execute(sql)# 获取查询结果results = cursor.fetchall()finally:connection.close()return json.dumps(results)
2、函数信息生成测试检查:
#定义工具函数列表
functions_list = [sql_inter]#工具函数信息生成
tools = auto_functions(functions_list)
tools
输出:

检查生成的函数信息结构是否正确,是否有缺失的key、value
3、数据分析测试
messages = [{"role": "system", "content": md_content},{"role": "user", "content": "请问user_demographics数据表的主键和user_services数据表的主键是否完全一致?"}
]
run_conversation(messages, functions_list=functions_list, model="gpt-3.5-turbo")
输出:

4、定义SQL提取函数
def extract_sql(json_str):# 提取并返回'sql_query'的值return json_str.get('sql_query', None)
5、两次次大模型API两次调用封装改造
改造二次大模型API两次调用的封装函数,引入用户确认的逻辑
def check_code_run(messages, functions_list=None, model="gpt-3.5-turbo",auto_run = True):"""能够自动执行外部函数调用的对话模型:param messages: 必要参数,字典类型,输入到Chat模型的messages参数对象:param functions_list: 可选参数,默认为None,可以设置为包含全部外部函数的列表对象:param model: Chat模型,可选参数,默认模型为gpt-3.5-turbo:return:Chat模型输出结果"""# 如果没有外部函数库,则执行普通的对话任务if functions_list == None:response = client.chat.completions.create(model=model,messages=messages,)response_message = response.choices[0].messagefinal_response = response_message.content# 若存在外部函数库,则需要灵活选取外部函数并进行回答else:# 创建functions对象tools = auto_functions(functions_list)# 创建外部函数库字典available_functions = {func.__name__: func for func in functions_list}# 第一次调用大模型response = client.chat.completions.create(model=model,messages=messages,tools=tools,tool_choice="auto", )response_message = response.choices[0].messagetool_calls = response_message.tool_callsif tool_calls:messages.append(response_message) for tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)if auto_run == False:sql_query = extract_sql(function_args)res = input('即将执行以下代码:%s。是否确认并继续执行(1),或者退出本次运行过程(2)' % sql_query)if res == '2':print("终止运行")return Noneelse:print("正在执行代码,请稍后...")function_response = function_to_call(**function_args)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,}) ## 第二次调用模型second_response = client.chat.completions.create(model=model,messages=messages,) # 获取最终结果final_response = second_response.choices[0].message.contentelse:final_response = response_message.contentdel messagesreturn final_response
6、定义消息列表
messages = [{"role": "system", "content": md_content},{"role": "user", "content": "请问iquery数据库下user_demographics表的第10条数据内容是?"}
]
#函数列表查看
functions_list

7、数据查询分析测试1
check_code_run(messages, functions_list=functions_list, model="gpt-3.5-turbo", auto_run = False)
输出:

8、数据查询分析测试2
messages = [{"role": "system", "content": md_content},{"role": "user", "content": "请问iquery数据库下user_demographics表有多少条数据?"}
]
check_code_run(messages, functions_list=functions_list, model="gpt-3.5-turbo", auto_run = False)
输出:

9、数据查询分析测试3
messages = [{"role": "system", "content": md_content},{"role": "user", "content": "请问iquery数据库下user_demographics表中,男性和女性的分别有多少人"}
]
check_code_run(messages, functions_list=functions_list, model="gpt-3.5-turbo", auto_run = False)
输出:

四、实现完整的多轮对话效果
经过上述步骤的不断优化和测试,我们最终实现了一个完整的多轮对话控制系统。该系统不仅能够理解用户的查询意图,还能够在需要时向用户确认信息,从而使得整个数据分析过程更加透明、可控。
import tiktokendef chat_with_inter(functions_list=None, prompt="你好呀", model="gpt-3.5-turbo", system_message=[{"role": "system", "content": "你是一个智能助手。"}], auto_run = True):# 创建函数列表对应的参数解释列表functions = auto_functions(functions_list)# 多轮对话阈值if 'gpt-4' in model:tokens_thr = 6000elif '16k' in model:tokens_thr = 14000else:tokens_thr = 3000messages = system_messagemessages.append({"role": "user", "content": prompt})## 计算token大小embedding_model = "text-embedding-ada-002"# 模型对应的分词器(TOKENIZER)embedding_encoding = "cl100k_base"encoding = tiktoken.get_encoding(embedding_encoding)tokens_count = len(encoding.encode((prompt + system_message[0]["content"])))while True: answer = check_code_run(messages, functions_list=functions_list, model=model, auto_run = auto_run)print(f"模型回答: {answer}")# 询问用户是否还有其他问题user_input = input("您还有其他问题吗?(输入退出以结束对话): ")if user_input == "退出":del messagesbreak# 记录新一轮问答messages.append({"role": "assistant", "content": answer})messages.append({"role": "user", "content": user_input})# 计算当前总token数tokens_count += len(encoding.encode((answer + user_input)))# 删除超出token阈值的对话内容while tokens_count >= tokens_thr:tokens_count -= len(encoding.encode(messages.pop(1)["content"]))
chat_with_inter(functions_list=functions_list, prompt="我想根据iquery数据库中数据分析用户流失情况,请问需要用到iquery数据库中的哪几张表呢?", model="gpt-3.5-turbo", system_message=[{"role": "system", "content": md_content}], auto_run = False)
对话效果

五、结语
在本篇章中,我们进一步强化了Agent智能数据分析平台的功能,通过实现可控的多轮对话交互确认逻辑,极大地提升了用户体验和系统的安全性。这一进步将为未来更加复杂、更加智能化的数据分析平台的构建奠定坚实的基础。

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路
😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:建立有技术交流群,可以扫码👇 加入社群,500本各类编程书籍、AI教程、AI工具等你领取!
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!
相关文章:
AI大模型探索之路-实战篇12: 构建互动式Agent智能数据分析平台:实现多轮对话控制
系列篇章💥 AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研 AI大模型探索之路-实战篇5:探索Open Interpreter开放代码解释器调研 AI大模型探索之路-实战篇6:掌握Function Calling的详细流程 AI大模型探索之路-实战篇7…...
深入理解文件系统和日志分析
文件是存储在硬盘上的,硬盘上的最小存储单位是扇区,每个扇区的大小是512字节。 inode:存储元信息(包括文件的属性,权限,创建者,创建日期等等) block:块,连续…...
vue+vant移动端显示table表格加横向滚动条
vant移动端显示table效果,增加复选框,可以进行多选和全选。加横向滚动条,可以看全部内容。 <template><div class"app-container"><div class"nav_text" style"position: relative;"><…...
webserver服务器从零搭建到上线(八)|EpollPoller事件分发器类
文章目录 EpollPoller事件分发器类成员变量和成员函数解释私有的成员函数和成员变量成员函数 具体实现常量的作用构造函数和析构函数⭐️poll函数updateChannel函数removeChannel 函数removeChannel 和updateChannel⭐️fillActiveChannels 函数⭐️update 函数 总结 终于要开始…...
SD-WAN:企业网络转型的必然趋势
随着SD-WAN技术的不断进步和完善,越来越多的企业选择利用SD-WAN进行网络转型。根据IDC的研究,47%的企业已经成功迁移到SD-WAN,另有48%的公司计划在未来两个月内部署这一技术。 据Channel Futures报道,一位合作伙伴透露,…...
构建高效稳定的短视频直播系统架构
随着短视频直播的迅猛发展,构建一个高效稳定的短视频直播系统架构成为了互联网企业的重要挑战。本文将探讨如何构建高效稳定的短视频直播系统架构,以提供优质的用户体验和满足日益增长的用户需求。 ### 1. 短视频直播系统的背景 短视频直播近年来蓬勃发…...
python分别保存聚类分析结果+KeyError: ‘CustomerID‘报错
如何在完成聚类分析后按聚类编号保存数据并且带上原数据所属ID # 将每个聚类的数据保存到不同的文件中 for cluster_id in range(6): # 假设共有6个聚类cluster_data data[data[cluster] cluster_id]cluster_data_with_customer_id cluster_data.copy()cluster_data_with_…...
Sui与Atoma合作为开发者提供AI支持
AI初创公司Atoma宣布其即将推出的推理网络将与Sui集成,该网络将使开发者能够在他们的应用程序中使用AI工具。Atoma选择Sui作为其第一个区块链集成对象是由于Sui的可扩展性和性能。 尽管生成式AI在过去几年中引起了轰动,但它尚未进入许多消费者应用程序。…...
go-gin中session实现redis前缀和db库选择+单点登录
分别实现了redigo中自动加前缀和session中自动加前缀 等有空了整理一个demo放到github上,到时候求个小星星 在gin-contrib/sessions/redis库中redis的前缀是被封装起来了,所以自定义前缀没有内部方法在这里我们自己实现一下NewStoreWithDBPrefix方法配…...
python-双胞胎字符串
[问题描述]:给定两个字符串s和t,每次可以任意交换s的奇数位和偶数位的字符,即奇数位的字符可以与任意其它奇数位的字符交换,偶数位的字符同样也可以与任意偶数位的字符的字符交换,问能否在有限的次数的交换下使s变为t?…...
万字长文,小白新手怎么开始做YOLO实验,从零开始教!整体思路在这里,科研指南针!
最近专栏来了很多的新手小白,对科研实验的过程感到困惑和无从下手,这篇文章就来讲解一下整体的科研流程,从选择数据集到发表论文的各个步骤,并针对大家在实验中常犯的错误进行解答。并且为大家提供通向我其他相关博客的指引&#…...
MDR-1A用什么前端:深度解析与实用指南
MDR-1A用什么前端:深度解析与实用指南 索尼MDR-1A作为一款备受瞩目的音乐耳机,其音质表现与前端设备的搭配息息相关。那么,MDR-1A用什么前端才能达到最佳的音效体验呢?本文将从四个方面、五个方面、六个方面和七个方面进行深入探…...
01Linux以及操作系统概述
课程目标 1.了解现代操作系统的整体构成及发展历史 2.了解Linux操作系统及其分支版本 3.直观上理解服务器端与桌面端版本的区别 课程实验 1.通过对CentOS和Ubuntu的演示,直观理解Linux与Windows的异同 课堂引入 本章内容主要为大家详细讲解Linux操作系统(以下简…...
华为OD刷题C卷 - 每日刷题 1
1、(两数之和): 这段代码是针对力扣(LeetCode)上的“两数之和”问题。它提供了一个Java类Solution,其中包含一个方法twoSum,该方法接收一个整数数组nums和一个整数目标值target。目的是找出数组…...
基于ELK的日志管理【开发实践】
文章目录 一、ELK简介1.1 ELK的作用与应用1.2 ELK的组成1.3 Elasticsearch1.4 Logstash1.5 Kibana1.6 ELK架构简述1.7 基础知识1.7.1 数据格式1.7.2 正排索引和倒排索引1.7.3 全文搜索 二、ES入门---基于HTTP的使用方式(了解)2.1 索引操作2.1.1 创建索引…...
音视频开发—音频相关概念:数模转换、PCM数据与WAV文件详解
文章目录 前言1.模拟数字转换(ADC)1.1ADC的关键步骤: 2.数字模拟转换(DAC)2.1DAC 的基本流程包括: 3.PCM数据3.1PCM 数据的关键要素包括: 4.WAV文件4.1 WAV的构成4.2WAV文件的标准块结构4.3WAV的…...
Elasticsearch 8.1官网文档梳理 - 十三、Search your data(数据搜索)
Search your data 这里有两个比较有用的参数需要注意一下 Search timeout:设置每个分片的搜索超时时间。从集群级别可以通过 search.default_search_timeout 来设置超时时间。如果在 search.default_search_timeout 设置的时间段内未完成搜索请求,就会…...
笔墨挥毫如游龙 最是经典铁线篆——记著名书法家王子彬
真正的书法大家,必是经历了日积月累的求索磨炼,毕竟书法从来都不是一蹴而就的艺术,因此但凡是急功近利者,其人也是远远无法达到书入臻境的创作高度。而纵观当代书坛界内,其中王子彬先生的艺术声誉可谓是广为人知,作为一名深具传统功底的实力派书法大家,王子彬先生的取法历途无疑…...
智慧校园有哪些特征
随着科技的飞速进步,教育领域正经历着一场深刻的变革。智慧校园,作为这场变革的前沿代表,正在逐步重塑我们的教育理念和实践方式。它不仅仅是一个概念,而是一个集成了物联网、大数据、人工智能等先进技术的综合生态系统࿰…...
day25回溯算法part02| 216.组合总和III 17.电话号码的字母组合
216.组合总和III 题目链接/文章讲解 | 视频讲解 class Solution { public:vector<vector<int>> result;vector<int> path;int sum;void backtracking(int n, int k, int startindex) {// int sum accumulate(path.begin(), path.end(), 0);if (sum n &am…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
