当前位置: 首页 > news >正文

Sklearn中逻辑回归建模


分类模型的评估

回归模型的评估方法,主要有均方误差MSE,R方得分等指标,在分类模型中,我们主要应用的是准确率这个评估指标,除此之外,常用的二分类模型的模型评估指标还有召回率(Recall)、F1指标(F1-Score)等等

准确率的局限性💥

准确率的定义是:对于给定的测试集,分类模型正确分类的样本数与总样本数之比。举个例子来讲,有一个简单的二分类模型model,专门用于分类动物,在某个测试集中,有30个猫+70个狗,这个二分类模型在对这个测试集进行分类的时候,得出该数据集有40个猫(包括正确分类的25个猫和错误分类的15个狗)和60个狗(包括正确分类的55个狗和错误分类的5个猫猫)。画成矩阵图表示,结果就非常清晰:

从图中可以看出,行表示该测试集中实际的类别,比如猫类一共有25+5=30个,狗狗类有15+55=70个。其中被分类模型正确分类的是该表格的对角线所在的数字。在sklearn中,这样一个表格被命名为混淆矩阵(Confusion Matrix),所以,按照准确率的定义,可以计算出该分类模型在测试集上的准确率为: Accuracy = 80%

💢即,该分类模型在测试集上的准确率为80%

在分类模型中可以定义

  • Actual condition positive(P):样本中阳性样本总数,一般也就是真实标签为1的样本总数;
  • Actual condition negative(N):样本中阴性样本总数,一般也就是真实标签为0的样本总数;
  • Predicted condition positive(PP):预测中阳性样本总数,一般也就是预测标签为1的样本总数;
  • Predicted condition negative(PN):预测中阴性样本总数,一般也就是预测标签为0的样本总数;
  • 当前案例中,可以将猫猫类别作为阳性样本,也就是二分类中的1类,狗狗作为阴性数据,也就是0类样本
  • 对于刚才的案例而言,P = 30, N = 70, PP = 40, PN = 60

进行二分类模型预测过程中,样本类别被模型正确识别的情况其实有两种,一种是阳性样本被正确识别,另一种是阴性样本被正确识别,据此我们可以有如下定义:

  • True positive(TP):样本属于阳性(类别1)、并且被正确识别为阳性(类别1)的样本总数;TP发生时也被称为正确命中(hit);
  • True negative(TN):样本属于阴性(类别0)、并且被正确识别为阴性(类别0)的样本总数;TN发生时也被称为正确拒绝(correct rejection);

上述样本中,TP=25,TN = 55 ~

当然,对于误分类的样本,其实也有两种情况,其一是阳性样本被误识别为阴性,其二是阴性样本被误识别为阳性,据此我们也有如下定义:

  • False positive(FP):样本属于阴性(类别0),但被错误判别为阳性(类别1)的样本总数;FP发生时也被称为发生I类了错误(Type I error),或者假警报(False alarm)、低估(underestimation)等;
  • False negative(FN):样本属于阳性(类别1),但被错误判别为阴性(类别0)的样本总数;FN发生时也被称为发生了II类错误(Type II error),或者称为错过目标(miss)、高估(overestimation)等;

 混淆矩阵也可以写成如下形式

但是,准确率指标并不总是能够评估一个模型的好坏,比如对于下面的情况,假如有一个数据集,含有98个狗狗,2个猫,而分类器model,是一个很差劲的分类器,它把数据集的所有样本都划分为狗狗,也就是不管输入什么样的样本,该模型都认为该样本是狗狗。

💯 则该模型的准确率为98%,因为它正确地识别出来了测试集中的98个狗狗,只是错误的把2个猫咪也当做狗狗,所以按照准确率的计算公式,该模型有高达98%的准确率

💢可是,这样的模型有意义吗?我们主要想识别出猫猫的类别,特意把猫猫作为1类,但是当前模型为了尽量追求准确率,完全牺牲了对猫猫识别的精度,这是一个极端的情况,却又是普遍的情况,准确率在一些场景并不适用,特别是对于这种样品数量偏差比较大的问题,准确率的“准确度”会极大的下降。所以,这时就需要引入其他评估指标评价模型的好坏。

召回率(Recall)💯
召回率侧重于关注全部的1类样本中别准确识别出来的比例,其计算公式为

对于当前案例,我们的召回率是 25 / (25+5) = 0.833, 30条正例样本,其中25条被预测正确

根据召回率的计算公式我们可以试想,如果以召回率作为模型评估指标,则会使得模型非常重视是否把1全部识别了出来,甚至是牺牲掉一些0类样本判别的准确率来提升召回率,即哪怕是错判一些0样本为1类样本,也要将1类样本识别出来,这是一种“宁可错杀一千不可放过一个”的判别思路。因此,召回率其实是一种较为激进的识别1类样本的评估指标,在0类样本被误判代价较低、而1类样本被误判成本较高时可以考虑使用。“宁可错杀一千不可放过一个 

当然,对于极度不均衡样本,这种激进的判别指标也能够很好的判断模型有没有把1类样本成功的识别出来。例如总共100条数据,其中有99条样本标签为0、剩下一条样本标签为1,假设模型总共有A、B、C三个模型,A模型判别所有样本都为0类,B模型判别50条样本为1类50条样本为0类,并且成功识别唯一的一个1类样本,C模型判别20条样本为1类、80条样本为0类,同样成功识别了唯一的一个1类样本,则各模型的准确率和召回率如下:

不难发现,在偏态数据中,相比准确率,召回率对于1类样本能否被正确识别的敏感度要远高于准确率,但对于是否牺牲了0类别的准确率却无法直接体现。 

精确率(Precision)💯

精确率的定义是:对于给定测试集的某一个类别,分类模型预测正确的比例,或者说:分类模型预测的正样本中有多少是真正的正样本,其计算公式是:

当前案例中,Precision = 25 / 25 + 15 = 0.625

精确度,衡量对1类样本的识别,能否成功(准确识别出1)的概率,也正是由于这种力求每次出手都尽可能成功的策略,使得当我们在以精确度作为模型判别指标时,模型整体对1的判别会趋于保守,只对那些大概率确定为1的样本进行1类的判别,从而会一定程度牺牲1类样本的准确率,在每次判别成本较高、而识别1样本获益有限的情况可以考虑使用精确度

💤关于召回率和精确度,也可以通过如下形式进行更加形象的可视化展示

  • F1值(F1-Measure)
  • 在理想情况下,我们希望模型的精确率越高越好,同时召回率也越高越高,但是,现实情况往往事与愿违,在现实情况下,精确率和召回率像是坐在跷跷板上一样,往往出现一个值升高,另一个值降低,那么,有没有一个指标来综合考虑精确率和召回率了,再大多数情况下,其实我们是希望获得一个更加“均衡”的模型判别指标,即我们既不希望模型太过于激进、也不希望模型太过于保守,并且对于偏态样本,既可以较好的衡量1类样本是否被识别,同时也能够兼顾考虑到0类样本的准确率牺牲程度,此时,我们可以考虑使用二者的调和平均数(harmonic mean)作为模型评估指标,这个指标就是F值。F值的计算公式为

F1-Score指标能够一定程度上综合Recall和Precision的结果,综合判断模型整体分类性能。当然,除了F1-Score以外我们还可以取Recall和Precision的均值(balanced accuracy,简称BA)来作为模型评估指标

sklearn 中的指标计算

from sklearn.metrics import recall_score, precision_score, f1_scorey_true = [0, 1, 1, 0, 1, 1]
y_pred = [0, 0, 1, 1, 1, 0]
print(f"召回率:{recall_score(y_true, y_pred)}")  
print(f"精确率:{precision_score(y_true, y_pred)}")  
print(f"f1-score:{f1_score(y_true, y_pred)}")  召回率:0.5
精确率:0.6666666666666666
f1-score:0.5714285714285715
  • 在类别划分上,仍然需要强调的是,我们需要根据实际业务情况,将重点识别的样本类划为类别1,其他样本划为类别0
  • 如果0、1两类在业务判断上并没有任何重要性方面的差异,那么我们可以将样本更少的哪一类划为1类
  • 在评估指标选取上,同样需要根据业务情况判断,如果只需要考虑1类别的识别率,则可考虑使用Recall作为模型评估指标,若只需考虑对1样本判别结果中的准确率,则可考虑使用Precision作为评估指标。但一般来说这两种情况其实都不多,更普遍的情况是,需要重点识别1类但也要兼顾0类的准确率,此时我们可以使用F1-Score指标。F1-Score其实也是分类模型中最为通用和常见的分类指标

相关文章:

Sklearn中逻辑回归建模

分类模型的评估 回归模型的评估方法,主要有均方误差MSE,R方得分等指标,在分类模型中,我们主要应用的是准确率这个评估指标,除此之外,常用的二分类模型的模型评估指标还有召回率(Recall&#xff…...

【ARM】MDK出现报错error: A\L3903U的解决方法

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 解决MDK出现报错error: A\L3903U这样类型的报错 2、 问题场景 电脑或者软件因为意外情况导致崩溃,无法正常关闭,强制电脑重启之后,打开工程去编译出现下面的报错信息(…...

0018__字体的kerning是什么意思

泰山OFFICE技术讲座:字体的kerning是什么意思-CSDN博客 了解CSS属性font-kerning,font-smoothing,font-variant-CSDN博客...

LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

文章汇总 总体来看像是一种带权重的残差,但解决的如何高效问题的事情。 相比模型的全微调,作者提出固定预训练模型参数不变,在原本权重矩阵旁路添加低秩矩阵的乘积作为可训练参数,用以模拟参数的变化量。 模型架构 h W 0 x △…...

cmake、make、makefile、ninga的关系

CMake是一种跨平台的构建系统,它用来管理软件的编译过程。CMake可以生成本地平台特定的构建文件,例如Makefile或者Microsoft Visual Studio项目文件,以便开发人员更轻松地在不同的平台上构建他们的项目。它的主要功能是配置和生成构建脚本&am…...

StarRocks详解

什么是StarRocks? StarRocks是新一代极速全场景MPP数据库(高并发数据库)。 StarRocks充分吸收关系型OLAP数据库和分布式存储系统在大数据时代的优秀研究成果。 1.可以在Spark和Flink里面处理数据,然后将处理完的数据写到StarRo…...

【C语言】进程间通信之管道pipe

进程间通信之管道pipe 一、进程间通信管道pipe()管道的读写行为 最后 一、进程间通信 管道pipe() 管道pipe也称为匿名管道,只有在有血缘关系的进程间进行通信。管道的本质就是一块内核缓冲区。 进程间通过管道的一端写,通过管道的另一端读。管道的读端…...

03.VisionMaster 机器视觉 位置修正 工具

VisionMaster 机器视觉 位置修正 工具 官方解释:位置修正是一个辅助定位、修正目标运动偏移、辅助精准定位的工具。可以根据模板匹配结果中的匹配点和匹配框角度建立位置偏移的基准,然后再根据特征匹配结果中的运行点和基准点的相对位置偏移实现ROI检测…...

Oracle 是否扼杀了开源 MySQL

Oracle 是否无意中扼杀了开源 MySQL Peter Zaitsev是一位俄罗斯软件工程师和企业家,曾在MySQL公司担任性能工程师。大约15年前,当甲骨文收购Sun公司并随后收购MySQL时,有很多关于甲骨文何时“杀死MySQL”的讨论。他曾为甲骨文进行辩护&#…...

机器学习归一化特征编码

特征缩放 因为对于大多数的机器学习算法和优化算法来说,将特征值缩放到相同区间可以使得获取性能更好的模型。就梯度下降算法而言,例如有两个不同的特征,第一个特征的取值范围为1——10,第二个特征的取值范围为1——10000。在梯度…...

抛光粉尘可爆性检测 打磨粉尘喷砂粉尘爆炸下限测试

抛光粉尘可爆性检测 抛光粉尘的可爆性检测是一种安全性能测试,用于确定加工过程中产生的粉尘在特定条件下是否会爆炸,从而对生产安全构成威胁。如果粉尘具有可爆性,那么在生产环境中就需要采取相应的防爆措施。粉尘爆炸的条件通常包括粉尘本身…...

python14 字典类型

字典类型 键值对方式,可变数据类型,所以有增删改功能 声明方式1 {} 大括号,示例 d {key1 : value1, key2 : value2, key3 : value3 ....} 声明方式2 使用内置函数 dict() 创建1)通过映射函数创建字典zip(list1,list2) 继承了序列的所有操作 …...

深入了解 .url文件中的 Prop3属性

在使用 Windows 操作系统时,我们经常会遇到以 .url 结尾的文件,它们通常被用来快速访问互联网上的特定网页。这些文件虽然看起来简单,但其中包含的 Prop3 属性却有其特殊的作用和意义。 1. Prop3 是什么? 在 .url 文件中&#x…...

vue3+vite:动态引入静态图片资源

目录 第一章 前言 第二章 vue2与vue3动态引入静态图片资源 2.1 vue2 webpack动态引入静态图片资源 2.1.1 了解 2.1.2 vue2项目动态引入静态图片资源 2.2 vue3 vite动态引入静态图片资源 2.2.1 了解 2.2.2 require vs import了解 2.2.3 vue3vite 项目动态引入静态图片…...

【K8s】专题五(3):Kubernetes 配置之 ConfigMap 与 Secret 异同

以下内容均来自个人笔记并重新梳理,如有错误欢迎指正!如果对您有帮助,烦请点赞、关注、转发!欢迎扫码关注个人公众号! 目录 一、相同点 二、不同点 一、相同点 功能作用:ConfigMap 与 Secret 都用于存储…...

用Python分析《三国演义》中的人物关系网

用Python分析《三国演义》中的人物关系网 三国演义获取文本文本预处理分词与词频统计引入停用词后进行词频统计构建人物关系网完整代码 三国演义 《三国演义》是中国古代四大名著之一,它以东汉末年到晋朝统一之间的历史为背景,讲述了魏、蜀、吴三国之间…...

k8s上使用ConfigMap 和 Secret

使用ConfigMap 和 Secret 实验目标: 学习如何使用 ConfigMap 和 Secret 来管理应用的配置。 实验步骤: 创建一个 ConfigMap 存储应用配置。创建一个 Secret 存储敏感信息(如数据库密码)。在 Pod 中挂载 ConfigMap 和 Secret&am…...

hexo实战:(二)个人独立博客优化合集

前言 上次介绍了使用 HexoGitHub Pages,零成本搭建一个专属自己的独立博客网站。我觉得那篇文章是没有入门门槛的,不管你是什么行业,只要想打造个人 IP,又不太想受博客平台约束,那么读完后动手操作一下也能轻松完成。…...

PostgreSQL的pg_relation_filepath函数

PostgreSQL的pg_relation_filepath函数 基础信息 OS版本:Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本:16.2 pg软件目录:/home/pg16/soft pg数据目录:/home/pg16/data 端口:5777在 PostgreSQL 中&…...

Vue开发中Element UI/Plus使用指南:常见问题(如Missing required prop: “value“)及中文全局组件配置解决方案

文章目录 一、vue中使用el-table的typeindex有时不显示序号Table 表格显示索引自定义索引报错信息解决方案 二、vue中Missing required prop: “value” 报错报错原因解决方案 三、el-table的索引值index在翻页的时候可以连续显示方法一方法二 四、vue3中Element Plus全局组件配…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...