LLM意图识别器实践
利用 Ollama 和 LangChain 强化条件判断语句的智能提示分类
❝
本文译自Supercharging If-Statements With Prompt Classification Using Ollama and LangChain一文,以Lumos工具为例,讲解了博主在工程实践中,如何基于LangChain框架和本地LLM优雅实现了通用的意图识别工具。
简短回顾 Lumos! 🪄
我以前写过不少关于 Lumos 的内容,所以这次我就简短介绍一下。Lumos 是一个基于本地大型语言模型(LLM)开发的网页浏览辅助工具,呈现为 Chrome 浏览器插件形式。它可以抓取当前页面的内容,并把抓取的数据在一个在线内存 RAG 工作流中处理,一切都在一个请求上下文内完成。Lumos 建立在 LangChain 基础上,并由 Ollama 本地LLM驱动,开源且免费。
Lumos 擅长于大型语言模型(LLM)所擅长的任务,比如:
- 摘要新闻文章、论坛帖子与聊天历史
- 关于餐厅和产品评价的查询
- 提取来自密集技术文档的细节
Lumos 甚至帮我优化了学习西班牙语的过程。该应用的操作逻辑极其方便。随着我不断深入使用这个应用,我也渐渐发掘出用LLM在浏览器中的新奇用法。
重建计算功能 🧮
在处理文本任务时,LLM 既有创意又灵巧。但它们的设计原则不是基于确定性Andrej Karpathy 曾将大型语言模型形容为 “dream machines”。因此,像 456*4343
这样简单的运算,LLM无法通过预测模型给出正确的回答。对于一个包含众多数值和符号的复杂方程,即便是最高级的模型也可能力不从心。
456*4343 — 56/(443-11+4)
等于多少?
GPT-3.5 错误地“计算”了 456*4343
Llama2 错误地“计算”了 456*4343
LLMs 在处理特定任务时需要借助额外的工具,比如执行代码或解决数学问题等。Lumos 也是如此。我不记得为什么需要在浏览器里快速使用计算器了(或许是计算税收?),但我知道我不想拿出手机或另开一个标签页。我只是希望我的 LLM 能准确解答数学问题。
所以,我决定把一个计算器集成到 Lumos 里。
借助 Ollama 进行提示分类 🦙
我之前用 Ollama 做了提示分类的实验并发现这个技术相当有用。如果可靠的话,“分类提示”的输出可以强化条件判断语句和逻辑分支。
虽然 Lumos 并没有基于 LangChain Agent 实现,但我希望用户使用它的体验能和与 Agent 互动一样流畅。它应能够在不需明确的指示下独立执行各种工具。应用程序应当能自动识别何时需要使用计算器。利用 Ollama 来判断是否需要计算器工具的实施是轻而易举的。
参考以下代码示例:
const isArithmeticExpression = async (baseURL: string, model: string, prompt: string,
): Promise<boolean> => {// 检查开头的触发指令 if (prompt.trim().toLowerCase().startsWith("calculate:")) { return new Promise((resolve) => resolve(true)); } // 否则,尝试分类当前提示 const ollama = new Ollama({ baseUrl: baseURL, model: model, temperature: 0, stop: [".", ","]}); const question = `以下提示是否代表含有数字和运算符的数学方程式?请用'是'或'否'来回答。\n\n提示: ${prompt}`; return ollama.invoke(question).then((response) => {console.log(`isArithmeticExpression 分类结果: ${response}`); const answer = response.trim().split(" ")[0].toLowerCase(); return answer.includes("yes"); });
};
只需询问大型语言模型,该提示是否为一个含有数字和运算符的数学方程,并检查返回的内容是否含有“是”或“否”。过程非常直接。这种实现即使在没有 JSON 模式和函数调用时也相当可靠。与让模型分类多个可能无关的类别相比,直接要求 LLM 对话给出二进制反应相比,更简单直接。我们在测试中的 Llama2 和 Mistral 都表现出色。将模型温度设为0,并配置结束序列如 [".", ","]
,能进一步提高响应速度和可靠度。相较于用户平时遇到的几秒钟的响应时间,这种分类所增加的延迟可以忽略不计。当然,对于某些应用来说,这点额外的等待时间或许还不够。
Lumos 控制台日志
我们还要特别强调,利用本地 LLMs,这个操作基本上是零成本的。Ollama 在这种情况下的实用性得到了充分的体现。为了让用户能最大程度地控制,我们还设有触发器选项,用户可通过在提示中加上特定的前缀来确保触发相应工具的执行。这与 ChatGPT 通过 @
符号调用特定 GPT 功能相似。
456 x 4343 =
1980408 🔢
Lumos 正确计算出 456*4343
Lumos 的计算器 设计得非常直观。它是以 LangChain 工具(Tool)的形式构建的,这样未来可以方便地将应用整合进更强大的 Agent 系统中。对于自定义工具,虽然 LangChain 推荐开发 DynamicTool
或 DynamicStructuredTool
,直接继承 Tool
基类同样简洁易行。
参见以下代码:
当 Lumos 接收到一个类似数学方程的提示,不管它的复杂程度如何,它都能自动判定调用计算器。
扩展分类技巧处理复杂条件 🌲
这种为多种模式功能而复现的分类技术,比如Lumos 的多模式能力,就能够在用户需要时从网页上下载图像。反之,如果不需要,则出于效率考虑,跳过下载过程。我决定用一个可配置的函数来普适化这种方法。
参见以下代码:
现在 classifyPrompt()
能够接收一个“分类提示”以及一个触发器参数。这个函数可以在整个应用程序代码中被复用。
把分类结果纳入条件判断语句是个自然、简单并且有效的做法。采用这种方法,软件开发者能够完全掌握应用程序的运作流程。到一定程度上,依赖于 LLM 的编程逻辑现在变得可测试了。
Lumos 在决定是否下载图像的时候,不仅考虑了分类结果,还把用户的一些配置选项考虑在内。更复杂的是,结合复杂应用状态(比如用户配置、访问控制、缓存状态等)和分类结果进行一致决策对于 LLM 来说,在大规模应用上会更有挑战。
这种方法可能被用于同时对多个 LLM 功能进行 A/B 测试。对于某些敏感领域,比如需要特定授权执行工具的情况或对 RAG 功能需要特定数据权限访问,这种设计方式看起来非常合适。我们不会让任何重要决策留给偶然。
Lumos 未来将如何发展?🔮
从短期来看,我将继续探索将更多工具集成进 Lumos。我将考虑迁移至 Agent 架构,并着手解决本地 LLM 应用运行时的效率和速度挑战。
长远来讲,还有更大的机遇值得我们考量。Chrome 插件固然强大,但其能力终究有限。当我们在思索将 LLM 运用到浏览器中的新场景时候,或许有必要完全打造一个全新的浏览器。目前而言,这些尚只是构想。暂且让我们享受在这个创新激动人心的时代开发 LLM 应用的过山车旅程,有了 LangChain 和 Ollama,这趟旅程会更加顺畅。😎
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。
相关文章:
LLM意图识别器实践
利用 Ollama 和 LangChain 强化条件判断语句的智能提示分类 ❝ 本文译自Supercharging If-Statements With Prompt Classification Using Ollama and LangChain一文,以Lumos工具为例,讲解了博主在工程实践中,如何基于LangChain框架和本地LLM优…...
常见的反爬手段和解决思路(爬虫与反爬虫)
常见的反爬手段和解决思路(爬虫与反爬虫) 学习目标1 服务器反爬的原因2 服务器长反什么样的爬虫(1)十分低级的应届毕业生(2)十分低级的创业小公司(3)不小心写错了没人去停止的失控小…...
Stable Diffusion【真人模型】:人像光影摄影极限写实真实感大模型
大家好,我是极客菌 今天和大家分享一个基于SD1.5的真人大模型:人像光影摄影极限写实真实感大模型。 该模型具有以下特点: 真实肤感(在面部肌理和皮肤肌理上均有加强学习,拒绝ai出图假的问题) 永不脱妆&a…...
java实现图片添加水印
文章目录 前言一、工具类WatermarkUtil二、工具类介绍2.1 图片来源类型2.2 水印类型2.3 读取本地图片2.4 读取网络图片2.5 水印处理2.6 添加水印 三、测试添加水印总结 前言 给图片添加水印是一个很常见的需求,一般是用来防盗用。比如我们csdn上面写的文章中&#…...
CSS规则——font-face
font-face 什么是font-face? 想要让网页文字千变万化,仅靠font-family还不够,还要借助font-face(是一个 CSS 规则,它允许你在网页上使用自定义字体,而不仅仅是用户系统中预装的字体。这意味着你可以通过提…...
【单片机毕业设计选题24034】-基于STM32的手机智能充电系统
系统功能: 系统可以设置充电时长,启动充电后按设置的充电时长充电,充电时间到后自动 停止充电,中途检测到温度过高也会结束充电并开启风扇和蜂鸣器报警。 系统上电后,OLED显示“欢迎使用智能充电系统请稍后”,两秒钟…...
[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解
目录 1.图的遍历1.广度优先遍历2.深度优先遍历 2.最小生成树1.Kruskal算法2.Prim算法 1.图的遍历 给定一个图G和其中任意一个顶点 v 0 v_0 v0,从 v 0 v_0 v0出发,沿着图中各边访问图中的所有顶点,且每个顶 点仅被遍历一次 “遍历”&…...
退市新规解读—财务类强制退市
一、退市风险警示:第一年触及相关指标 上市公司最近一个会计年度触及下列退市风险指标之一,公司股票或存托凭证被实施退市风险警示(*ST): 第1项 组合类财务指标 仅发行A股或B股,最近一个会计年度或追溯重述后最近一个会计年度 …...
小程序的生命周期使用方法和应用场景
小程序生命周期 初始化(App Launch) • 触发时机:小程序首次启动时。 • 主要事件:onLaunch。 • 功能与适用场景: • 全局数据初始化:设置应用的全局状态和变量。 • 登录状态检查:判断用户是…...
什么是C++模块化系统?C++20的模块化系统。
C20引入的模块化系统是一种新的代码组织和编译机制,它旨在替代传统的头文件机制,提供更好的代码组织、更快的编译速度和更强的封装性。模块化系统的主要目标包括: 减少编译时间:通过减少冗余的头文件解析和宏定义传播,…...
智慧校园-档案管理系统总体概述
智慧校园档案管理系统,作为教育信息化进程中的重要一环,它运用现代信息技术的力量,彻底改变了传统档案管理的面貌,为学校档案资源的收集、整理、存储、检索与利用开辟了全新的途径。这一系统全面覆盖学生、教职工、教学科研及行政…...
文心一言 VS 讯飞星火 VS chatgpt (290)-- 算法导论21.3 3题
三、给出一个包含 m 个 MAKE-SET 、UNION 和 FINDSET 操作的序列(其中有 n 个是 MAKE-SET 操作),当仅使用按秩合并时,需要 Ω(mlgn) 的时间。如果要写代码,请用go语言。 文心一言: 在并查集(Union-Find)数…...
逻辑回归梯度推导
逻辑回归是一种广泛使用的分类算法,用于估计一个事件发生的概率。它是线性回归的扩展,通过sigmoid函数将线性回归的输出映射到[0, 1]区间,从而用于分类任务。 在逻辑回归中,我们使用对数似然损失函数(log-likelihood l…...
Python 使用函数输出一个整数的逆序数
在Python中,你可以定义一个函数来输出一个整数的逆序数。这里有一个简单的实现方法: def reverse_integer(x):# 检查输入是否为整数if not isinstance(x, int):raise ValueError("Input must be an integer")# 将整数转换为字符串,…...
【Linux】Wmware Esxi磁盘扩容
目录 一、概述 1.1 磁盘分区概念 1.2 LVM概念 二、扩容步骤 二、报错 一、概述 1.1 磁盘分区概念 在 Linux 中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。Linux把各种 IDE 设备分配了一个由 hd 前缀组成的文…...
树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标
今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi) 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1: 今日学习 OpenCv定位物体实时位置,代码来源是…...
MySQL之如何定位慢查询
1、如何定位慢查询 1.1、使用开源工具 调试工具:Arthas 运维工具:Promethuss、Skywalking 1.2、MySQL自带慢日志 慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒&#x…...
Open3D 删除点云中重复的点
目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份 构造重叠区域 合并点云获得重叠点 2、主要…...
填报志愿选专业是兴趣重要还是前景重要?
进行专业评估,找到一个适合自己的专业是一件非常困难的事情。在进行专业选择时,身上理想化色彩非常严重的人,会全然不顾及他人的劝阻,义无反顾的以兴趣为主,选择自己热爱的专业。一些较多考虑他人建议,能听…...
python开发基础——day9 函数基础与函数参数
一、初识函数(function) 编程函数!数学函数,里面的是逻辑,功能,而不是套公式 编程函数的作用实现特定操作的一段代码 你现在请客,每个人都点同样的一份吃的,请100个人 1.薯条 2.上校鸡块 3.可乐 那…...
STM32——使用TIM输出比较产生PWM波形控制舵机转角
一、输出比较简介: 只有高级定时器和通用寄存器才有输入捕获/输出比较电路,他们有四个CCR(捕获/比较寄存器),共用一个CNT(计数器),而输出比较功能是用来输出PWM波形的。 红圈部分…...
第十五章 集合(set)(Python)
文章目录 前言一、集合 前言 集合(set)是一个无序的不重复元素序列。 一、集合 set {1, 2, 3, 4}...
面试-javaIO机制
1.BIO BIO:是传统的javaIO以及部分java.net下部分接口和类。例如,socket,http等,因为网络通信同样是IO行为。传统IO基于字节流和字符流进行操作。提供了我们最熟悉的IO功能,譬如基于字节流的InputStream 和OutputStream.基于字符流…...
在.NET Core中,config和ConfigureServices的区别和作用
在.NET Core中,config和ConfigureServices是两个不同的概念,它们在应用程序的启动和配置过程中扮演着不同的角色。 ConfigureServices:这是ASP.NET Core应用程序中的一个方法,位于Startup类的内部。它的作用是配置依赖注入(DI)容器…...
App Inventor 2 如何实现多个定时功能?
1、可以使用多个“计时器”组件。 2、也可以用一个计时器,定时一分钟。也就是一分钟就会触发一次事件执行,定义一个全局数字变量,在事件中递增,用逻辑判断这个变量的值即可完成多个想要定时的任务(о∀о) 代码块请参考…...
技术驱动的音乐变革:AI带来的产业重塑
📑引言 近一个月来,随着几款音乐大模型的轮番上线,AI在音乐产业的角色迅速扩大。这些模型不仅将音乐创作的门槛降至前所未有的低点,还引发了一场关于AI是否会彻底颠覆音乐行业的激烈讨论。从初期的兴奋到现在的理性审视࿰…...
重生之我要学后端0--HTTP协议和RESTful APIs
http和RESTful APIs HTTP协议RESTful APIs设计RESTful API设计实例 HTTP协议 HTTP(超文本传输协议)是用于分布式、协作式和超媒体信息系统的应用层协议。它是网页数据通讯的基础。工作原理简述如下: 客户端请求(Request…...
深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络
文章目录 一、前言二、卷积操作2.1 填充(padding)2.2 步长2.3 输出特征图尺寸计算2.4 多通道卷积 三、池化操作四、Lenet-5及CNN结构进化史4.1 Lenet-5 一、前言 卷积神经网络–AlexNet(最牛)-2012 Lenet-5-大规模商用(1989) 二、…...
AI Infra简单记录
向量数据库的作用 1. 在AI大模型训练过程中,向量数据库可以有效提升数据检索、特征提取等任务的效率。 2、在AI大模型推理过程中,向量数据库为大模型提供外挂知识库,提升模型时效性与准确性,提供缓存能力,减少调用开…...
三英战吕布 | 第5集 | 温酒斩华雄 | 竖子不足与谋 | 三国演义 | 逐鹿群雄
🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 📌这篇博客分享的是《三国演义》文学剧本第Ⅰ部分《群雄逐鹿》的第5️⃣集《三英战吕布》的经典语句和文学剧本全集台词 文章目录 1.经典语句2.文学剧本台…...
织梦做的网站打包在dw修改/佛山市seo推广联系方式
vue 3.x 马上就要问世了,显然尤大大是不想让我们好好活了,但是转念一想,比你优秀的人都还在努力,那我们努力还有什么用,开个玩笑而已,本人对于 vue 的接触时间不长,对其也没有深入地去研究源码&…...
怎样做网站xml/优化技术基础
opencv与dlib介绍 1.1 opencv介绍 opencv是一个基于bsd许可(开源)发行的跨平台计算机视觉库,可以运行在liunx,windows,android和mac os操作系统上。它轻量级而且高效由一系列c函数和少量c类构成。同时提供python ,ruby ,matlab等…...
有什的自学做网站/产品营销方案
开门见山就一句话,.hpp文件是c中默认模板实现文件。大家都知道.cpp是c的实现文件,那么要使用.hpp文件呢?这就要从模板的编译和链接说起。模板的编译过程会分成两部分。一般大家会将对应的模板的定义和实现写在同一个文件中,而有时…...
沈阳市网站建设/网推怎么推广
教材学习内容总结 串流 Java将输入/输出抽象化为串流,数据有来源及目的地,衔接两者的是串流对象。 从应用程序角度来看,如果要将数据从来源取出,可以使用输入串流,如果要将数据写入目的地,可以使用输出串流…...
罗岗网站建设公司/网站收录服务
首先,要分别在两个文件中实现以下两个类 class Object { public: NewType ToType(); }; class NewType : public Object { } -------------------------------------------------------------------------------- 做法1 -------------------------------------------------…...
国外做外贸的小网站/东莞网站制作模板
[codevs1141]数列 试题描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k3时,这个序列是: 1,3,4,9,10,12&am…...