【单目3D检测】smoke(1):模型方案详解
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。
- 题目:SMOKE:Single-Stage Monocular 3D Object Detection via Keypoint Estimation
- 代码:https://github.com/lzccccc/SMOKE
Introduction
2D目标检测目前已经在精度和速度上都取得了不错的成绩,而3D目标检测由于需要同时估计出目标的位置与姿态,因此相比2D是一个更具挑战的方向。
目前性能最好的3D目标检测还是需要依赖激光雷达的点云或者点云+图像融合,考虑到成本因素,仅依靠单目摄像头的3D目标检测还是非常值得研究的。
本作有以下几个贡献点:
- 提出了一个one-stage单目3D检测方法,思路简答,且end-to-end。
- 3D框8个角点的计算使用了多种方式得到,每种方式都参与了loss的计算,使训练更容易收敛。
- 在KITTI数据集上达到了SOTA。
Detection Problem
SMOKE Approach
Backbone
主干网络选择使用DLA-34,其中部分卷积换成了DCN,最后的输出相对于原始图4次下采样的特征图。论文还将BN换成了GN(GroupNorm),因为GN对batch size的大小不那么敏感,且在训练中对噪声更鲁棒。
3D Detection Network
head部分一共两条分支,一条用于检测目标中心点位置同时分类,另一条回归目标的3D信息。
Keypoint Branch
中心点的估计与CenterNet那片论文的思路相似,不同的是CenterNet里用的是2D框的中心点,而这里用的是3D框的中心点在图像上的投影点,如下图所示:
Regression Branch
根据深度信息,投影点(x,y)坐标,和相机参数,可计算得到3D中心点坐标
预测长宽高,有点像anchor的思想
偏航角:ray到Z轴角度
Loss Function
偏航角pred与尺寸gt,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸pred,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸gt,坐标pred构成的3d box与gt的回归loss
Keypoint Classification分支的loss跟CenterNet中一样,用的是focal loss。
Regression分支的loss计算比较有新意,没有采取直接计算τ \tauτ中8个参数的loss,而是通过在角度、尺寸、坐标位置三种分支下得到的3D框的8个角点去和真值比较计算loss。
总loss:
# mmdetection3d/mmdet3d/models/dense_heads/smoke_mono3d_head.py
# 角度分支下计算得到的3D框,所谓角度分支即只有角度用的是预测值,而坐标位置和尺寸两个用的是真值
bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, orientations, img_metas)
# 尺寸分支下计算得到的3D框
bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, gt_orientations, img_metas)
# 坐标位置分支下计算得到的3D框
bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, gt_orientations, img_metas)
...
...
# 三种分支下分别计算推理出的8个角点的和真值8个角点的loss
loss_bbox_oris = self.loss_bbox(pred_bboxes['ori'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_dims = self.loss_bbox(pred_bboxes['dim'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_locs = self.loss_bbox(pred_bboxes['loc'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris
Conclusion
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。
参考:https://blog.csdn.net/qq_30483585/article/details/124954023
相关文章:
【单目3D检测】smoke(1):模型方案详解
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。 题目:SMOKE&…...
数据库系统概论:数据库系统的锁机制
引言 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,数据作为一种共享资源,其并发访问的一致性和有效性是数据库必须解决的问题。锁机制通过对数据库中的数据对象(如表、行等)进行加锁,以确保在同…...
Django+vue自动化测试平台(28)-- ADB获取设备信息
概述 adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb可以在Eclipse中通过DDMS来调试Android程序,说白了就是调试工具。 adb的工作方式比较特殊,采用监听Socket TCP 5554等端口的方式让IDE和Qemu通讯,默认情况下…...
RESTful API设计指南:构建高效、可扩展和易用的API
文章目录 引言一、RESTful API概述1.1 什么是RESTful API1.2 RESTful API的重要性 二、RESTful API的基本原则2.1 资源导向设计2.2 HTTP方法的正确使用 三、URL设计3.1 使用名词而非动词3.2 使用复数形式表示资源集合 四、请求和响应设计4.1 HTTP状态码4.2 响应格式4.2.1 响应实…...
npm下载的依赖包版本号怎么看
npm下载的依赖包版本号怎么看 版本号一般分三个部分,主版本号、次版本号、补丁版本号。 主版本号:一般依赖包发生重大更新时,主版本号才回发生变化,如Vue2.x到Vue3.x。次版本号:当依赖包中发生了一些小变化ÿ…...
css前端面试题
1.什么是css盒子模型? 盒子模型包含了元素内容(content)、内边距(padding)、边框(border)、外边距(margin)几个要素。 标准盒子模型和IE盒子模型的区别在于其对元素的w…...
Vue从零到实战
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...
【Chatgpt大语言模型医学领域中如何应用】
随着人工智能技术 AI 的不断发展和应用,ChatGPT 作为一种强大的自然语言处理技术,无论是 自然语言处理、对话系统、机器翻译、内容生成、图像生成,还是语音识别、计算机视觉等方面,ChatGPT 都有着广泛的应用前景。特别在临床医学领…...
ES6 正则的扩展(十九)
1. 正则表达式字面量改进 特性:在 ES6 中,正则表达式字面量允许在字符串中使用斜杠(/)作为分隔符。 用法:简化正则表达式的书写。 const regex1 /foo/; const regex2 /foo/g; // 全局搜索2. u 修饰符(U…...
<数据集>钢铁缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:1800张 标注数量(xml文件个数):1800 标注数量(txt文件个数):1800 标注类别数:6 标注类别名称:[crazing, patches, inclusion, pitted_surface, rolled-in_scale, scr…...
Kafka系列之:Kafka存储数据相关重要参数理解
Kafka系列之:Kafka存储数据相关重要参数理解 一、log.segment.bytes二、log.retention.bytes三、日志段四、log.retention.check.interval.ms五、数据底层文件六、index、log、snapshot、timeindex、leader-epoch-checkpoint、partition.metadata一、log.segment.bytes 参数lo…...
Template execution failed: ReferenceError: name is not defined
问题 我们使用了html-webpack-plugin(webpack)进行编译html,导致的错误。 排查结果 连接地址 html-webpack-plugin版本低(2.30.1),html模板里面不能有符号,注释都不行 // var reg new RegExp((^|&)${name}([^&…...
CVE-2024-24549 Apache Tomcat - Denial of Service
https://lists.apache.org/thread/4c50rmomhbbsdgfjsgwlb51xdwfjdcvg Apache Tomcat输入验证错误漏洞,HTTP/2请求的输入验证不正确,会导致拒绝服务,可以借助该漏洞攻击服务器。 https://mvnrepository.com/artifact/org.apache.tomcat.embed/…...
Linux下如何安装配置Graylog日志管理工具
Graylog是一个开源的日志管理工具,可以帮助我们收集、存储和分析大量的日志数据。它提供了强大的搜索、过滤和可视化功能,可以帮助我们轻松地监控系统和应用程序的运行情况。 在Linux系统下安装和配置Graylog主要包括以下几个步骤: 准备安装…...
「MQTT over QUIC」与「MQTT over TCP」与 「TCP 」通信测试报告
一、结论 在实车5G测试中「MQTT Over QUIC」整体表现优于「TCP」,可在系统架构升级时采用MQTT Over QUIC替换原有的TCP通讯;从实现原理上基于QUIC比基于TCP在弱网、网络抖动导致频繁重连场景延迟更低。 二、测试方案 网络类型:实车5G、实车…...
获取磁盘剩余容量-----c++
获取磁盘剩余容量 #include <filesystem>struct DiskSpaceInfo {double total;double free;double available; };DiskSpaceInfo getDiskSpace(const std::string& path) {std::filesystem::space_info si std::filesystem::space(path);DiskSpaceInfo info;info.…...
AI算法24-决策树C4.5算法
目录 决策树C4.5算法概述 决策树C4.5算法简介 决策树C4.5算法发展历史 决策树C4.5算法原理 信息熵(Information Entropy) 信息增益(Information Gain) 信息增益比(Gain Ratio) 决策树C4.5算法改进 …...
【云原生】Prometheus整合Alertmanager告警规则使用详解
目录 一、前言 二、Altermanager概述 2.1 什么是Altermanager 2.2 Altermanager使用场景 三、Altermanager架构与原理 3.1 Altermanager使用步骤 3.2 Altermanager工作机制 3.3 Altermanager在Prometheus中的位置 四、Altermanager部署与接入Prometheus 4.1 Altermana…...
C++ :友元类
友元类的概念和使用 (1)将类A声明为B中的friend class后,则A中所有成员函数都成为类B的友元函数了 (2)代码实战:友元类的定义和使用友元类是单向的 (3)友元类是单向的,代码实战验证 互为友元类 (1)2个类可以互为友元类,代码实战…...
【整理了一些关于使用swoole使用的解决方案】
目录 如何监控和分析 Swoole 服务器的性能瓶颈? 在进行 Swoole 服务器性能优化时,有哪些常见的错误和陷阱需要避免? 除了 Swoole,还有哪些 PHP 框架或技术可以用于构建高并发的 Web 应用? Swoole 同步请求在高并发…...
python selenium4 EdgeDriver动态页面爬取
截止至2024.7.16 chrome浏览器最新版本为126.0.6478.127 但对应的chromeDriver版本都低于此版本,因此,转用Edge浏览器 说明:仅记录自己使用过程中用到的一些代码和感受,看具体情况不定期更新。 selenium官方文档 1、安装selen…...
【一次记一句:SQL】从 information_schema.TABLES中查询数据库表中记录数据量
有时候,一张千万数据量的表,使用 count(*) 统计记录数,查不动。可以使用下述SQL来试试: SELECT CONCAT(table_schema, ., table_name) AS "Table Name", table_rows AS "Number of Rows", CONCAT(ROUND(data…...
NXP i.MX8系列平台开发讲解 - 3.19 Linux TTY子系统(二)
专栏文章目录传送门:返回专栏目录 Hi, 我是你们的老朋友,主要专注于嵌入式软件开发,有兴趣不要忘记点击关注【码思途远】 目录 1. Linux 串口驱动 1.1 Uart 驱动注册流程 1.2 uart 操作函数 1.3 line discipline 2. Linux tty应用层使用…...
FPGA资源容量
Kintex™ 7 https://www.amd.com/zh-tw/products/adaptive-socs-and-fpgas/fpga/kintex-7.html#product-table AMD Zynq™ 7000 SoC https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html#product-table AMD Zynq™ UltraScale™ RFSoC 第一代 AMD Z…...
Zabbix介绍和架构
目录 一.Zabbix简介 1.为什么需要监控 2.需要监控什么 3.常见的监控工具 4.Zabbix使用场景及系统概述 5.Zabbix 架构 6.Zabbix工作流程 7.Zabbix 术语 二. 部署安装zabbix 三.zabbix 配置文件 一.Zabbix简介 1.为什么需要监控 运维行业有句话:“无监控、不运维”&am…...
打造智慧图书馆:AI视频技术助力图书馆安全与秩序管理
一、背景需求 随着信息技术的飞速发展,图书馆作为重要的知识传播场所,其安全管理也面临着新的挑战。为了确保图书馆内书籍的安全、维护读者的阅读环境以及应对突发事件,TSINGSEE青犀旭帆科技基于EasyCVR视频监控汇聚平台技术与AI视频智能分析…...
Go的数据结构与实现【LinkedList】
介绍 所谓链表(Linked List),就是按线性次序排列的一组数据节点。每个节点都是一个对象,它通过一个引用指向对应的数据元素,同时还通过一个引用next指向下一节点。 实现 逻辑方法 我们定义链表的结构体:…...
Ubuntu22.04安装CUDA+CUDNN+Conda+PyTorch
步骤: 1、安装显卡驱动; 2、安装CUDA; 3、安装CUDNN; 4、安装Conda; 5、安装Pytorch。 一、系统和硬件信息 1、Ubuntu 22.04 2、显卡:4060Ti 二、安装显卡驱动 (已经安装的可以跳过&a…...
当“广撒网”遇上“精准定点”的鱼叉式网络钓鱼
批量网络钓鱼电子邮件活动倾向于针对大量受众,它们通常使用笼统的措辞和简单的格式,其中不乏各种拼写错误。而有针对性的攻击往往需要付出更大的努力,攻击者会伪装成雇主或客户向目标发送包含个人详细信息的个性化消息。在更大范围内采用这种…...
svn ldap认证临时切换到本地认证
当前的svn是在CentOS 7 下 SVN、 Apache 对接 LDAP 服务实现用户账号管理和权限认证,本文模拟ldap数据丢失如何恢复svn,方法是临时将认证切换到本地认证 编辑subversion.conf文件 vi /etc/httpd/conf.d/subversion.conf 注释ldap-status #<Locati…...
一个人做公司管理网站/seo智能优化公司
一、标题title 在浏览器标签处显示的内容,写在html的head部分 <head><title>网页标题</title> </head>二、网页简述description 对网页的一个简单概述,写在html的head部分 <head><meta name"description"…...
中铁建设集团有限公司官方网站/百度指数的基本功能
因为虽然匿名内部类在方法的内部,但实际编译的时候,内部类编译成Outer.Inner,这说明内部类所处的位置和外部类中的方法处在同一个等级上,外部类中的方法中的变量或参数只是方法的局部变量,这些变量或参数的作用域只在这个方法内部…...
安阳网站设计哪家好/哪些浏览器可以看禁止访问的网站
面试官的问题: (1)问:点击一个图标到这个应用启动的全过程(前面是项目经验没啥好说的)。 答:点击图标后通过startActivity远程调用到ams中,ams中将新启动的activity以activityrecor…...
北京网站建设 一流/新浪疫情实时数据
面向对象程序设计上机练习十二(运算符重载) Time Limit: 1000MS Memory Limit: 65536KBSubmit StatisticProblem Description 处理一个复数与一个double数相加的运算,结果存放在一个double型变量d1中,输出d1的值。定义Complex(复数…...
龙江做网站/网站都有哪些
作者:张楷露、张琪 封面:自己想吧一、基本思想的异同共同点从二者表达的含义上看,主成分分析法和因子分析法都寻求少数的几个变量(或因子)来综合反映全部变量(或因子)的大部分信息,变量虽然较原始变量少,但所包含的信…...
沽源网站建设案例/西安seo服务
作者按:7月28日周日下午,在TDengine物联网大数据平台开源两周后,涛思数据联合CSDN举办了「TDengine 和他的小伙伴们」Beijing Meetup活动。活动后,我应CSDN邀约,撰写此文,讲述了我开发TDengine的新路历程&a…...