当前位置: 首页 > news >正文

Polars简明基础教程十一:可视化(一)

到本次讲座结束时,你将能够:

  • 使用Polars的内部plot方法从Polars创建图表
  • 使用外部绘图库从Polars创建图表
  • 了解这些库如何支持Polars

通常,需要可视化库的最新版本来实现最大程度的兼容性

import polars as plimport hvplot as hv
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import altair as alt
import vegafusion as vf

为Altair启用vegafusion

解释:

  1. Altair 是一个基于 Python 的声明式统计可视化库。它允许你用简洁的语法创建复杂的交互式图表。Altair 生成的图表基于 Vega-Lite 规范,这是一种用于描述数据可视化的 JSON 格式。
  2. Vegafusion 是一个优化工具,旨在加速 Altair 图表的渲染速度,特别是在处理大数据集时。它通过在服务器端执行更多的数据处理和渲染工作,从而减轻客户端浏览器的负担,使图表响应更快、更流畅。

在使用 Altair 进行数据可视化时,我们一般要激活或配置 Vegafusion 来优化图表的性能。具体来说,这意味着当你在 Polars 或其他环境中使用 Altair 创建图表时,Vegafusion 会在后台工作,确保图表加载速度快,即使数据量很大也能保持良好的用户体验。

vf.enable() # 启用vegafusioncsv_file = '../data/titanic.csv'
df = pl.read_csv(csv_file)
df.head(3)shape: (3, 15)
┌──────────┬────────┬────────┬──────┬───┬──────┬─────────────┬───────┬───────┐
│ survived ┆ pclass ┆ sex    ┆ age  ┆ … ┆ deck ┆ embark_town ┆ alive ┆ alone │
│ ---      ┆ ---    ┆ ---    ┆ ---  ┆   ┆ ---  ┆ ---         ┆ ---   ┆ ---   │
│ i64      ┆ i64    ┆ str    ┆ f64  ┆   ┆ str  ┆ str         ┆ str   ┆ bool  │
╞══════════╪════════╪════════╪══════╪═══╪══════╪═════════════╪═══════╪═══════╡
│ 0        ┆ 3      ┆ male   ┆ 22.0 ┆ … ┆ null ┆ Southampton ┆ no    ┆ false │
│ 1        ┆ 1      ┆ female ┆ 38.0 ┆ … ┆ C    ┆ Cherbourg   ┆ yes   ┆ false │
│ 1        ┆ 3      ┆ female ┆ 26.0 ┆ … ┆ null ┆ Southampton ┆ yes   ┆ true  │
└──────────┴────────┴────────┴──────┴───┴──────┴─────────────┴───────┴───────┘

我们首先通过创建一个简单的条形图来查看是否可以直接将Polars的DataFrame传递给每个绘图库。接下来,我们将考虑从Polars与每个库协作时需要注意的其他一些要点。

条形图

我们首先统计每个乘客等级中的乘客数量。有关此处使用的方法的更多信息,请参阅课程中关于统计和聚合的部分。

passenger_class_counts_df = (df['pclass'].value_counts().sort("pclass")
)passenger_class_counts_dfshape: (3, 2)
┌────────┬───────┐
│ pclass ┆ count │
│ ---    ┆ ---   │
│ i64    ┆ u32   │
╞════════╪═══════╡
│ 1      ┆ 216   │
│ 2      ┆ 184   │
│ 3      ┆ 491   │
└────────┴───────┘

使用hvPlot内置绘图

DataFrame有一个内置的.plot方法,该方法将DataFrame传递给hvPlot库

注释:

Polars 数据库框架直接集成了 hvPlot 这个绘图工具,使得用户可以直接在 Polars 的 DataFrame 上进行数据可视化,而无需额外安装或导入其他专门的绘图库(尽管 hvPlot 本身仍需要被安装)。

hvPlot 是一个用于快速生成高质量图表的 Python 库,它构建在 HoloViews 和 Bokeh 之上,提供了非常直观的 API,使得从数据帧到图表的转换变得简单且强大。它支持多种数据源,包括 Pandas DataFrame 和 Series。

在 Polars 中,hvPlot 的功能已经被内化了,用户可以直接在 Polars DataFrame 上调用 hvPlot 的方法来创建图表,无需像以前那样先将数据转换为 Pandas DataFrame 或者单独使用 hvPlot 的函数。

passenger_class_counts_df.plot.bar(x="pclass",y="count"
)

hvPlot 是对底层绘图库的封装。默认情况下,它使用 Bokeh 库来生成交互式图表,这些图表在右侧包含控件,可以:

  •  在我们悬停在数据上时添加描述数据的工具提示
  • 支持平移和缩放
  • 有一个重置按钮以恢复到原始视图 

在 JupyterLab 中,图表会自动显示。但如果你在使用 IPython 终端,hvPlot 也可以启动一个临时服务器,在浏览器中显示图表,只要你:

  •  首先创建一个图表对象并将其分配给变量 p
  • 调用 hv.show(p) 
p = (passenger_class_counts_df.plot.bar(x="pclass",y="count"))hv.show(p)

在这个例子中,我们根据乘客等级(pclass)的颜色进行散点图绘制,以年龄(age)为横坐标,票价(fare)为纵坐标,并控制图表的宽度。

p = (df.plot.scatter(x="age",y="fare",color="pclass",    width=500)
)hv.show(p)

然而,用于 pclass 的颜色映射并不是很有用,因为它将 pclass 的整数视为连续数值而不是离散的分类值(这是不同绘图库中常见的现象)。

在绘图之前,我们将 pclass 转换为字符串,以获得更好的颜色映射。

p = (df.with_columns(pl.col("pclass").cast(pl.Utf8)).plot.scatter(x="age",y="fare",color="pclass",    )
)hv.show(p)

我们可以使用 cmap 参数明确控制所使用的颜色映射。可用的颜色映射设置在这里:

https://holoviews.org/user_guide/Colormaps.html

请注意,您选择的颜色映射必须与您正在使用的 hvPlot 绘图后端(默认为 Bokeh)相匹配。

Polars简明基础教程系列

Polars简明基础教程十二:可视化(二)

Polars简明基础教程十一:可视化(一)

Polars简明基础教程十:Numpy和Pandas的相互转换(2)

Polars简明基础教程九:Numpy和Pandas的相互转换(1)

Polars简明基础教程八:Series 和 DataFrame 以及它们之间的转换_B

Polars简明基础教程七:Series 和 DataFrame 以及它们之间的转换_A

Polars简明基础教程六:什么是Polars的“DataFrame(数据框)_下”

Polars简明基础教程五:什么是Polars的“DataFrame(数据框)_上”

Polars简明基础教程四:懒惰模式 2:评估查询

Polars简明基础教程三:懒惰模式 1:引入懒惰模式(续)

Polars简明基础教程二:懒惰模式 1:引入懒惰模式

Polars简明基础教程一:Polars快速入门

相关文章:

Polars简明基础教程十一:可视化(一)

到本次讲座结束时,你将能够: 使用Polars的内部plot方法从Polars创建图表使用外部绘图库从Polars创建图表了解这些库如何支持Polars 通常,需要可视化库的最新版本来实现最大程度的兼容性 import polars as plimport hvplot as hv import ma…...

实战项目:贪吃蛇游戏的实现(上)

前言 Hello, 今天我们来一起完成一个实战项目:贪吃蛇。 相信大家都不会对这个游戏感到陌生,贪吃蛇游戏是久负盛名的游戏,他和俄罗斯方块,扫雷游戏等游戏位列世界经典游戏之列。这次我们旨在通过实战项目贪吃蛇的实现&#xff0c…...

SHT30温湿度传感器全解析——概况,性能,MCU连接,样例代码

常见温湿度传感器测量范围:(价格仅供参考,具体性能要看折线图) 型号DHT11DHT20AHT10AHT20AHT30SHT20价格¥ 2.49¥3.04¥ 1.9¥1.4¥ 1.3¥5.5温度测量范围20—90%RH0—100%RH0—100%RH0—…...

SQL server 同环比计算模板

1、计算 月 年 季度的环比和同比 计算公式如下: 环比增长率 (本期数 - 上期数) / |上期数| 100% 同比增长率 (本期数 - 同期数) / |同期数| * 100% --- dbo.ads_erp_finance_gross_profit_actual_invoice_yoy_m…...

python发送外部请求

在Python中,服务器发送外部请求是一个常见的操作,尤其是在需要集成不同服务或API时。有多种库可以帮助你完成这项任务,但最流行和广泛使用的库之一是requests。以下是如何使用requests库在Python服务器中发送外部请求的基本步骤: …...

c++并发编程面试题

1. C中lock_guard和unique_lock的区别? 在C中,lock_guard和unique_lock都是用于管理互斥锁的类,它们提供了一种 RAII(Resource Acquisition Is Initialization)机制来确保锁在作用域结束时自动释放。尽管它们的目的相…...

K8S上安装LongHorn(分布式块存储) --use

要在 Kubernetes上安装 LongHorn,您可以按照以下步骤进行操作: 准备工作 参考 官网教程将LongHorn只部署在k8s-worker5节点上。https://github.com/longhorn/longhorn 安装要求 Each node in the Kubernetes cluster where Longhorn is installed must f…...

2024年前端技术发展趋势分析

2024年的前端技术发展趋势继续受到快速变化的技术环境和不断增长的用户期望的影响。以下是2024年前端技术发展的几个关键趋势: 1. Web 组件和自定义元素 Web 组件技术(包括 Shadow DOM、HTML Templates 和 Custom Elements)正在成为构建可重…...

spring boot 笔记大杂烩

一,springboot项目创建 springboot创建时idea会打开start.spring.io失败报错 可以手动打开这个页面,然后选择maven项目,然后修改group和name名然后添加依赖web,然后生成项目包,解压缩后用idea打开就能用了 运行后报错…...

如何在香港云服务器上优化网站性能?

在香港云服务器上优化网站性能可以通过以下几种方式进行,确保用户从全球各地访问时获得快速、稳定的体验: 1. 使用内容分发网络 (CDN) 优势:CDN可以将静态内容(如图像、视频、CSS、JavaScript文件)缓存到全球多个节点…...

STM32低功耗与备用备份区域

STM的备份备用区域其实就是两个区块:BKP和RTC。低功耗则其实是STM32四种模式中的三种耗能很低的模式。 目录 一:备用区域 1.BKP 2.RTC 二:低功耗模式 1.睡眠模式: 2.停机模式: 3.待机模式: 一&…...

武汉某汽配公司携手三品软件 共绘PLM项目新蓝图

近日,三品软件与武汉某汽配公司达成战略合作,双方将共同启动PLM项目,以助力该公司在汽车制造业的研发管理领域实现全面升级。 客户简介 该公司自2008年成立以来,一直专注于为汽车制造业提供自动化输送系统、车辆装配的合装技术和…...

uniapp多图上传uni.chooseImage上传照片uni.uploadFile,默认上传9张图

uniapp多图上传uni.chooseImage上传照片uni.uploadFile 代码示例: /**上传照片 多图*/getImage() {uni.chooseImage({count: 9, //默认9sizeType: [original, compressed], //可以指定是原图还是压缩图,默认二者都有sourceType: [album], //从相册选择/…...

MySQL——内置函数

时间函数 select * from msg where date_add(sendtime, interval 2 minute) > now(); 理解: ------------------------------|-----------|-------------|------------------ 初始时间 now() 初始时间2min 字符串 length函数返回字符串长度,以字节为…...

2024年最新版小程序云开发数据模型的开通步骤,支持可视化数据库管理,支持Mysql和NoSql数据库,可以在vue3前端web里调用操作

小程序官方又改版了,搞得石头哥不得不紧急的再新出一版,教大家开通最新版的数据模型。官方既然主推数据模型,那我们就先看看看新版的数据模型到底是什么。 一,什么是数据模型 数据模型是什么 数据模型是一个用于组织和管理数据的…...

智慧水库大坝安全监测预警系统解决方案

前言 水库大坝作为重要的水利设施,承载着防洪涝、灌溉、发电等功能,关系着无数人的生命财产安全,一旦发生意外事故,后果将不堪设想,因此需要建立一套水库大坝安全监测预警系统解决方案。 系统概述 水库大坝安全监测…...

基于SpringBoot+VUE的社区团购系统(源码+文档+部署)

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等 业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写…...

LeetCode 3151. 特殊数组 I【数组】简单【Py3,C++,Java,GO,Rust】

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

超级字符串技能:提升你的编码游戏

嘿嘿,uu们,今天咱们来详解字符函数与字符串函数,好啦,废话不多讲,开干! 1.:字符分类函数 C语言中又一系列的函数是专门做字符分类的,也就是一个字符属于什么类型的字符的,这些函数的使用需要包含头文件ctype.h 这些函数的使用方法都十分类似,博主在这里就举两到三个…...

米联客-FPGA程序设计Verilog语法入门篇连载-16 Verilog语法_时钟分频设计

软件版本:无 操作系统:WIN10 64bit 硬件平台:适用所有系列FPGA 板卡获取平台:https://milianke.tmall.com/ 登录“米联客”FPGA社区 http://www.uisrc.com 视频课程、答疑解惑! 1概述 本小节讲解Verilog语法的时钟…...

【Echarts】custom自定义图表实现甘特图

效果图 主要注意点: 1、右上角图例visualMap实现 2、visualMap增加formatter 3、series使用custom自定义图表,encode解析四维数组。核心是renderItem方法,必填项,且需要注意要全部定义在options里面!!&…...

【高等代数笔记】003线性方程组的解法(一)

1. 线性方程组的解法 1.1 解线性方程组的矩阵消元法 【例1】解线性方程组 { x 1 3 x 2 x 3 2 3 x 1 4 x 2 2 x 3 9 − x 1 − 5 x 2 4 x 3 10 2 x 1 7 x 2 x 3 1 \left\{\begin{array}{ll} x_{1}3x_{2}x_{3}2 \\ 3x_{1}4x_{2}2x_{3}9 \\ -x_{1}-5x_{2}4x_{3}10 \\…...

Scrapy入门教程

Scrapy入门教程:打造高效爬虫的第一步 1. 引言 在当今的网络世界中,信息是无价的资源。而爬虫工具则是获取这些资源的有力武器。Scrapy 是 Python 生态系统中最强大的爬虫框架之一,它不仅功能强大,而且易于扩展,适用…...

Microsoft VBA Excel VBA学习笔记——双重筛选+复制数值1.0

问题场景 CountryProductCLASS 1CLASS 2CLASS 3CLASS 4CLASS 5CLASS 6…USApple0.3641416030.8918210610.0591451990.7320110290.0509636560.222464259…USBanana0.2300833330.4027262180.1548836670.2988904860.7802326210.028592635…CNApple0.7762370470.5075548320.481978…...

谷歌反垄断官司败诉后,或又面临被拆分风险?

KlipC报道:上周8月5日,美国法院裁定谷歌的搜索业务违反了美国反垄断法,非法垄断在线搜索和搜索文本广告市场。据悉,胜诉的美国司法部正在考虑拆分谷歌。其他选项包括强制谷歌与竞争对手分享更多数据,以及防止其在人工智…...

数据结构入门——06树

1.树 树(Tree)非线性数据结构,它是n(n≥0)个节点的有限集合,它满足两个条件 : 有且仅有一个特定的称为根(Root)的节点; 其余的节点可以分为m(m…...

FFmpeg源码:av_packet_move_ref、av_packet_make_refcounted函数分析

一、av_packet_move_ref函数 (一)av_packet_move_ref函数的声明 av_packet_move_ref函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavcodec/packet.h中: /*** Move every field in src to ds…...

12 中断

12 中断 1、内核中断编程2、顶半部和底半部机制2.1 任务的相关概念2.1.1 分类2.1.2 优先级2.1.3 进程调度2.1.4 休眠sleep 2.2 顶半部和底半部实现机制2.2.1 顶半部特点2.2.2 底半部特点2.2.3 底半部实现方法之:tasklet2.2.4 底半部实现机制之工作队列2.2.5 底半部实现机制之软…...

经典算法题总结:十大排序算法,外部排序和Google排序简介

十大排序算法 就地性:顾名思义,原地排序通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。 稳定性:稳定排序在完…...

服务器是什么?怎么选择适合自己的服务器?

在这个数字化的世界中,我们每天都在与各种网站打交道,浏览新闻、购物、看视频等。你是否曾经好奇过,这些网站是如何运行的?它们又是如何实现随时随地可访问的呢? 在这背后,有一个神秘的角色在默默地支撑着…...

如何做网站咨询/站长工具黄

2019独角兽企业重金招聘Python工程师标准>>> #Install Docker Log into your Ubuntu installation as a user with sudo privileges. Verify that you have wget installed. $ which wget If wget isn’t installed, install it after updating your manager: $ su…...

郑州网站建设rwxwl/优化网站价格

Redis:简述Redis的数据淘汰机制Redis在每个服务客户端执行一个命令的时候,都会先检测使用的内存是否超额。 在Redis中,我们可以设置Redis的最大使用内存大小(server.maxmemory)。当Redis内存数据集大小上升到一定程度…...

乘客电梯做推广的网站/站长工具seo客户端

gh-ost实战运用 一、安装步骤 1、环境 go版本:1.10.3 gh-ost版本:1.0.46 2、安装go语言 # 安装go依赖包 yum install bison ed gawk gcc libc6-dev make -y# 配置go环境变量 vim ~/.bashrc export GOROOT/usr/local/go export PATH$PATH:$GOROOT/bin exp…...

怎样做自己的网站加入百度联盟/百度网站建设

前往Mongodb官网下载安装包Mongodb下载地址:https://www.mongodb.com/download-center 可以下载最新的版本进行安装学习也可以点击 All Version Binaries 下载历史版本进行安装,本文的安装及后续快速入门使用的是3.4.10的版本,我本机使用的是mongodb-lin…...

h5网站建站/竞价托管推广哪家好

手机信号栏经常出现一些小图标,造成手机使用上的一些问题,可大可小,因此不少用户对于手机信号栏出现的图标还是非常在意的。最近就有人问小榜:手机信号栏为什么经常出现HD标识,有什么意义吗?接下来&#xf…...

物联网项目设计方案/谷歌优化是什么意思

在Visual FoxPro中创建Web服务注:该文章节选自作者的《Visual FoxPro程序设计参考手册》 创建一个Web服务是一个复杂的过程,这涉及到要使用Internet信息服务(IIS)、Visual FoxPro COM服务程序和简单对象访问协议(SOAP…...