当前位置: 首页 > news >正文

【有啥问啥】DINO:一种改进的去噪锚框的端到端目标检测器

DINO

DINO:一种改进的去噪锚框的端到端目标检测器

在目标检测领域,DINO(DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection)是一种创新的端到端目标检测模型,旨在解决传统目标检测算法中的一些关键问题,如收敛速度慢、训练时间长以及对小物体的处理困难等。本文将详细介绍DINO的原理、技术改进、实验结果以及其在计算机视觉任务中的卓越表现。

  • 传送门链接: 什么是端到端(End-to-End)?

一、引言

目标检测是计算机视觉中的基本任务,旨在识别图像中的物体并确定其位置和类别。传统基于卷积的目标检测算法(如Faster R-CNN等)虽然取得了显著进展,但它们在性能优化上高度依赖手工设计的特征,例如锚点生成和非最大抑制(NMS),这导致在复杂场景和小物体检测方面表现不佳。

近年来,基于Transformer的目标检测算法如DETR(Detection Transformer)为目标检测领域带来了新的思路。DETR通过消除手工设计组件,实现了与经典检测器相当的性能,但其收敛速度慢和训练时间长等问题仍然限制了其广泛应用。为了解决这些问题,研究者们提出了多种改进方法,其中DINO便是其中的佼佼者。

  • 传送门链接: 探索DETR:基于Transformer的目标检测框架

二、DINO的原理与技术改进

DINO是在Deformable DETR、DAB-DETR和DN-DETR的基础上进一步改进而来的。它融合了这些模型的多种策略,并提出了以下三种新的方法:

  1. 对比去噪训练(Contrastive DeNoising Training)

DN-DETR提出了去噪训练以提升模型的收敛速度,但存在两个主要问题:重复预测和无法有效拒绝远离真实目标的预测。为解决这些问题,DINO引入了显式的难分负样本,将其标记为“no object”,使模型能够更有效地拒绝无用锚框。

具体来说,DINO通过在真实锚框和标签上增加噪声生成正负样本。所有噪声等级小于λ1的被视为正样本,而所有等级大于λ1但小于λ2的则视为负样本。训练时,正样本使用重构损失,负样本则希望被分类为“no object”。这种对比去噪训练方法有助于避免模型对相同目标的重复输出,并显著提升模型性能。

  1. 混合查询选择方法(Mixed Query Selection)

DINO的解码器查询初始化采用了混合查询选择方法。在DETR和Deformable DETR中,解码器的内容查询和位置查询初始化方式各有不同。DETR的内容查询初始化为0,位置查询则使用nn.Embedding随机初始化;而Deformable DETR的查询均由编码器输出导出。

DINO结合了这两种方法,将编码器输出作为位置查询的初始化,同时保持内容查询的随机初始化。这种混合方法结合了两者的优点,能够更好地初始化查询,提高模型的整体性能。

  1. 向前看两层的锚框更新方法(Look Forward Twice)

在Deformable DETR中,解码器层预测锚框的偏移量并逐层更新,但每层的预测结果仅影响当前层的参数更新。为利用后续层的精细框信息帮助优化前两层的参数,DINO提出了一种新的向前看两层的锚框更新方法。

具体而言,DINO允许当前层的预测结果影响前两层的参数更新。这一策略使得模型能够更好地利用后续层的梯度信息来优化早期层的参数,从而显著提高检测准确性。

三、实验设计与结果

DINO在COCO数据集上进行了大量实验,使用ResNet-50作为主干网络,并在多个尺度上提取特征。评估指标采用平均精度(AP),以系统评估不同IoU阈值下的检测性能。

实验结果显示,DINO在24个epoch中实现了49.4AP和51.3AP,分别比DN-DETR提高了+6.0AP和+2.7AP,证明了其有效性。此外,DINO在模型大小和数据大小上均能良好扩展。在使用SwinL主干对Objects365数据集进行预训练后,DINO在COCO val2017(63.2AP)和test-dev(63.3AP)基准测试中取得了最佳结果,进一步印证了其优越性能和可扩展性。

四、视觉结果与应用

DINO的应用领域非常广泛,包括但不限于自动驾驶、安防监控和医学影像分析等。在自动驾驶领域,DINO能够准确检测车辆和行人,提高自动驾驶系统的安全性。在安防监控领域,DINO能实时监测和识别异常行为,提升安全防范能力。在医学影像分析中,DINO帮助医生更准确地诊断疾病,提升医疗水平。

以下是DINO在实际应用中的一些检测结果:

  • 自动驾驶:在复杂城市环境中,DINO准确检测行人和其他车辆,显著提升行驶安全性。
  • 安防监控:DINO在监控视频中识别出异常行为,帮助安防人员及时响应。
  • 医学影像:DINO辅助医生在医学影像中识别病灶,提升诊断的准确性。

五、结论与未来工作

DINO作为一种先进的端到端目标检测器,通过对比去噪训练、混合查询选择方法和向前看两层的锚框更新方法,提高了模型性能和效率。在COCO数据集上的实验结果证明了DINO的优越性和可扩展性。DINO的成功不仅在于其技术创新,还在于其多种策略的有效结合,推动了目标检测领域的突破性进展。

未来的研究可以集中在以下几个方向:

  1. 多任务学习:将目标检测与其他视觉任务(如分割、识别等)结合,提升模型的综合性能。
  2. 实时检测:优化模型结构,提高在移动设备上的实时检测能力,以满足工业应用需求。
  3. 鲁棒性提升:增强模型在各种环境(如低光、遮挡等)下的鲁棒性,提高实际应用的可靠性。

通过对DINO的深入理解,我们可以更好地把握目标检测领域的最新进展,并为实际应用提供有力的技术支持。随着计算机视觉技术的不断发展,DINO等先进的目标检测算法将在更多领域发挥重要作用,推动人工智能技术的广泛应用和发展。

相关文章:

【有啥问啥】DINO:一种改进的去噪锚框的端到端目标检测器

DINO:一种改进的去噪锚框的端到端目标检测器 在目标检测领域,DINO(DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection)是一种创新的端到端目标检测模型,旨在解决传统目标检测算法中的一些关…...

自由学习记录(15)

Java注解 else if的省略问题(可能看花) else if也是取最近的if连通,看上去加了{}就可以正常执行了,缩进要命,不提示真容易看错, 组合数公式和数组参数 在 C 中,数组作为函数参数时,…...

Docker 部署 JDK11 图文并茂简单易懂

部署 JDK11 ( Docker ) [Step 1] : 下载JDK11 - JDK 11 | Oracle 甲骨文官网 [Step 2] : jdk11上传服务器/root/jdk11 可自行创建文件夹 进入目录 /root/jdk11 解压文件 tar -zxvf jdk-11.0.22_linux-x64_bin.tar.gz解压后 进入 /root/jdk11/jdk-11.0.22 创建 jre 文件 ./bi…...

Cisco ASAv虚拟防火墙

EVE-NG模拟器使用Cisco防火墙版本ASAv-9.20.3-PLR-Licensed。配置如下,主要是三个方面,配置管理口地址模式DHCP,配置安全级别;第二,开启http服务器,配置允许访问主机的网段和接口;最后配置用户名…...

w~自动驾驶合集6

我自己的原文哦~ https://blog.51cto.com/whaosoft/12286744 #自动驾驶的技术发展路线 端到端自动驾驶 Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A SurveyEnd-to-end Autonomous Driving: Challenges and Frontiers 在线高精地图 HDMa…...

C/C++ H264文件解析

C实现H264文件以及一段H264码流解析&#xff0c;源码如下&#xff1a; h264Parse.h: #ifndef _H264PARSE_H_ #define _H264PARSE_H_#include <fstream>class H264Parse { public:int open_file(const std::string &filename);/*** brief 从文件中读取一个nalu&…...

【Windows】电脑端口明明没有进程占用但显示端口被占用(动态端口)

TOC 一、问题 重启电脑后&#xff0c;启用某个服务显示1089端口被占用。 查看是哪个进程占用了&#xff1a; netstat -aon | findstr "1089"没有输出&#xff0c;但是换其他端口&#xff0c;是可以看到相关进程的&#xff1a; 现在最简单的方式是给我的服务指定另…...

Redis 持久化 问题

前言 相关系列 《Redis & 目录》&#xff08;持续更新&#xff09;《Redis & 持久化 & 源码》&#xff08;学习过程/多有漏误/仅作参考/不再更新&#xff09;《Redis & 持久化 & 总结》&#xff08;学习总结/最新最准/持续更新&#xff09;《Redis & …...

vivado 配置

配置 配置指的是将特定应用数据加载到 FPGA 器件的内部存储器的进程。 赛灵思 FPGA 配置数据储存在 CMOS 配置锁存 (CCL) 中&#xff0c;因此配置数据很不稳定&#xff0c;且在每次 FPGA 器件上电后都必须重 新加载。 赛灵思 FPGA 器件可通过配置引脚&#xff0c;自行…...

Java如何实现PDF转高质量图片

大家好&#xff0c;我是 V 哥。在Java中&#xff0c;将PDF文件转换为高质量的图片可以使用不同的库&#xff0c;其中最常用的库之一是 Apache PDFBox。通过该库&#xff0c;你可以读取PDF文件&#xff0c;并将每一页转换为图像文件。为了提高图像的质量&#xff0c;你可以指定分…...

itemStyle.normal.label is deprecated, use label instead.

itemStyle.normal.label is deprecated, use label instead. normal’hierarchy in label has been removed since 4.0. All style properties are configured in label directly now. 错误写法&#xff1a; itemStyle: {normal: {// color: #00E0FF, // 设置折线点颜色 labe…...

如何在 Linux VPS 上保护 MySQL 和 MariaDB 数据库

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 有许多在 Linux 和类 Unix 系统上可用的 SQL 数据库语言实现。MySQL 和 MariaDB 是在服务器环境中部署关系型数据库的两个流行选项…...

CSS 样式 box-sizing: border-box; 用于控制元素的盒模型如何计算宽度和高度

文章目录 box-sizing: border-box; 的含义默认盒模型 (content-box)border-box 盒模型 在微信小程序中的应用示例 在微信小程序中&#xff0c;CSS 样式 box-sizing: border-box; 用于控制元素的盒模型如何计算宽度和高度。具体来说&#xff0c; box-sizing: border-box; 会改…...

预训练 BERT 使用 Hugging Face 和 PyTorch 在 AMD GPU 上

Pre-training BERT using Hugging Face & PyTorch on an AMD GPU — ROCm Blogs 2024年1月26日&#xff0c;作者&#xff1a;Vara Lakshmi Bayanagari. 这篇博客解释了如何从头开始使用 Hugging Face 库和 PyTorch 后端在 AMD GPU 上为英文语料(WikiText-103-raw-v1)预训练…...

鸿蒙是必经之路

少了大嘴的发布会&#xff0c;老实讲有点让人昏昏入睡。关于技术本身的东西&#xff0c;放在后面。 我想想来加把油~ 鸿蒙发布后褒贬不一&#xff0c;其中很多人不太看好鸿蒙&#xff0c;一方面是开源性、一方面是南向北向的利益问题。 不说技术的领先点&#xff0c;我只扯扯…...

Java项目实战II基于微信小程序的马拉松报名系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 马拉松运动…...

家用wifi的ip地址固定吗?换wifi就是换ip地址吗

在探讨家用WiFi的IP地址是否固定&#xff0c;以及换WiFi是否就意味着换IP地址这两个问题时&#xff0c;我们首先需要明确几个关键概念&#xff1a;IP地址、家用WiFi网络、以及它们之间的相互作用。 一、家用WiFi的IP地址固定性 家用WiFi环境中的IP地址通常涉及两类&#xff1a…...

codeforces _ 补题

C. Ball in Berland 传送门&#xff1a;Problem - C - Codeforces 题意&#xff1a; 思路&#xff1a;容斥原理 考虑 第 i 对情侣组合 &#xff0c;男生为 a &#xff0c;女生为 b &#xff0c;那么考虑与之匹配的情侣 必须没有 a | b &#xff0c;一共有 k 对情侣&#x…...

DataSophon集成ApacheImpala的过程

注意: 本次安装操作系统环境为Anolis8.9(Centos7和Centos8应该也一样) DataSophon版本为DDP-1.2.1 整合的安装包我放网盘了: 通过网盘分享的文件&#xff1a;impala-4.4.1.tar.gz等2个文件 链接: https://pan.baidu.com/s/18KfkO_BEFa5gVcc16I-Yew?pwdza4k 提取码: za4k 1…...

深入探讨TCP/IP协议基础

在当今数字化的时代&#xff0c;计算机网络已经成为人们生活和工作中不可或缺的一部分。而 TCP/IP 协议作为计算机网络的核心协议&#xff0c;更是支撑着全球互联网的运行。本文将深入探讨常见的 TCP/IP 协议基础&#xff0c;带你了解计算机网络的奥秘。 一、计算机网络概述 计…...

《Windows PE》7.4 资源表应用

本节我们将通过两个示例程序&#xff0c;演示对PE文件内图标资源的置换与提取。 本节必须掌握的知识点&#xff1a; 更改图标 提取图标资源 7.4.1 更改图标 让我们来做一个实验&#xff0c;替换PE文件中现有的图标。如果手工替换&#xff0c;一定是先找到资源表&#xff0c;…...

【重生之我要苦学C语言】猜数字游戏和关机程序的整合

今天来把学过的猜数字游戏和关机程序来整合一下 如果有不明白的可以看往期的博客 废话不多说&#xff0c;上代码&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <time.h> #include <stdlib.h> #include <string.h> void…...

基于centos7脚本一键部署gpmall商城

基于centos7脚本一键部署单节点gpmall商城&#xff0c;该商城可单节点&#xff0c;可集群&#xff0c;可高可用集群部署&#xff0c;VMware17&#xff0c;虚拟机IP&#xff1a;192.168.200.100 将软件包解压到/root目录 [rootlocalhost ~]# ls dist …...

Mac book英特尔系列?M系列?两者有什么区别呢

众所周知&#xff0c;Mac book有M系列&#xff0c;搭载的是苹果自研的M芯片&#xff0c;也有着英特尔系列&#xff0c;搭载的是英特尔的处理器&#xff0c;虽然从 2020 年开始&#xff0c;苹果公司逐步推出了自家研发的 M 系列芯片&#xff0c;并逐渐将 MacBook 产品线过渡到 M…...

Python unstructured库详解:partition_pdf函数完整参数深度解析

Python unstructured库详解&#xff1a;partition_pdf函数完整参数深度解析 1. 简介2. 基础文件处理参数2.1 文件输入参数2.2 页面处理参数 3. 文档解析策略3.1 strategy参数详解3.2 策略选择建议 4. 表格处理参数4.1 表格结构推断 5. 语言处理参数5.1 语言设置 6. 图像处理参数…...

<项目代码>YOLOv8路面病害识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…...

广告牌和标签学习

效果&#xff1a; 知识学习&#xff1a; entities添加标签label和广告牌billboard label&#xff1a; text&#xff1a;文本添加 font&#xff1a;字体大小和字体类型 fillColor&#xff1a;字体颜色 outlineColor&#xff1a;字体外轮廓颜色 outlineWidth&#xff1a;字体外轮…...

GDB 从裸奔到穿戴整齐

无数次被问道&#xff1a;你在终端下怎么调试更高效&#xff1f;或者怎么在 Vim 里调试&#xff1f;好吧&#xff0c;今天统一回答下&#xff0c;我从来不在 vim 里调试&#xff0c;因为它还不成熟。那除了命令行 GDB 裸奔以外&#xff0c;终端下还有没有更高效的方法&#xff…...

WPF的触发器(Trigger)

WPF&#xff08;Windows Presentation Foundation&#xff09;是微软.NET框架的一部分&#xff0c;用于构建Windows客户端应用程序。在WPF中&#xff0c;触发器&#xff08;Triggers&#xff09;是一种强大的功能&#xff0c;允许开发者根据控件的状态或属性值来动态改变控件的…...

全能大模型GPT-4o体验和接入教程

GPT-4o体验和接入教程 前言一、原生API二、Python LangchainSpring AI总结 前言 Open AI发布了产品GPT-4o&#xff0c;o表示"omni"&#xff0c;全能的意思。 GPT-4o可以实时对音频、视觉和文本进行推理&#xff0c;响应时间平均为 320 毫秒&#xff0c;和人类之间对…...

网站开发技术合同/明年2024年有疫情吗

委托的声明 public delegate void MyDelegate(string str); 注 1.委托的定义和方法的定义类似&#xff0c;只是在前面加了一个delegate,但委托不是方法&#xff0c;它是一种类型。是一种特殊的类型,看成是一种新的对象类型比较好理解。用于对与该委托有相 同签名的方法调用。 2…...

西双版纳 网站建设/线上推广平台

linux RTC 驱动模型分析RTC(real time clock)实时时钟&#xff0c;主要作用是给Linux系统提供时间。RTC因为是电池供电的&#xff0c;所以掉电后时间不丢失。Linux内核把RTC用作“离线”的时间与日期维护器。当Linux内核启动时&#xff0c;它从RTC中读取时间与日期&#xff0c;…...

新手建站教程视频/电子商务网站

一、抽象工厂模式简介&#xff08;Bref Introduction&#xff09; 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;&#xff0c;提供一个创建一系列相关或者相互依赖对象的接口&#xff0c;而无需制定他们的具体类。优点是&#xff1a;易于交换产品系列&#xf…...

南宁网站制作-中国互联/优化设计官方电子版

安装前先关闭杀毒软件和360卫士&#xff0c;注意安装路径不能有中文&#xff0c;安装包路径也不要有中文。[安装环境]&#xff1a;Win7/Win8/Win101.鼠标右击【VMware 15.5.0】压缩包选择【解压到VMware 15.5.0】。2.双击打开解压后的【VMware 15.5.0】文件夹。3.鼠标右击【VMw…...

东莞保安公司招聘电话/seo sem是什么职位

OSI的七层协议体系结构的概念清楚,理论也比较完整,但它既复杂又不实用。 TCP/IP体系结构则不同&#xff0c;但它却得到了非常广泛的应用。TCP/IP是一个四层的体系结构&#xff0c;它包含应用层、运输层、网际层和网络接口层&#xff08;用网际层这个名字是强调这一层是为了解决…...

phpcms可以做网站吗/搜索引擎查询

解析 H.264 NAL Unit 帧类型的代码&#xff1a; 1 // 2 // 功能: 从 Nal Unit 数据中获取帧类型 3 // 读取字节结构体 4 typedef struct bs_t_T 5 { 6 unsigned char *pucStart; // 缓冲区首地址 7 unsigned char *pucCurrent; // 缓冲区当…...