使用语音模块的开发智能家居产品(使用雷龙LSYT201B 语音模块)

在这篇博客中,我们将探讨如何使用 LSYT201B 语音模块 进行智能设备的语音交互开发。通过这个模块,我们可以实现智能设备的语音识别和控制功能,为用户带来更为便捷和现代的交互体验。
1. 语音模块介绍
LSYT201B 是一个基于“芯片+算法”的语音交互解决方案,专为智能家居市场设计。它具备以下关键特点:
- 高性能低功耗:采用32位处理器,支持浮点运算,运行频率达到240MHz,内置2MB Flash 存储。
- 多功能音频支持:包含双通道16位DAC和单通道16位ADC,适用于各类音频输入输出应用。
- 支持本地语音识别:可以进行150个词条的本地语音识别,支持多轮语音交互。
- 蓝牙连接:符合蓝牙V5.1规范,支持多种功耗需求及高效传输。
这些功能使得 LSYT201B 模块特别适合用于智能家居设备,例如智能照明、智能音箱及其他需要语音控制的设备。
2. 语音模块的功能特性
模块的功能包括音频输入、蓝牙传输、以及UART串口通信等。以下是一些模块的具体特性:
- 音频特性:
- 双通道16位DAC,支持多种采样率,如8KHz、16KHz、48KHz等,信噪比高达95dB。
- 支持麦克风输入,可以灵活适配不同的音频输入源。
- 通信接口:
- 支持 UART接口,使用标准的UART异步串口协议,3.3V TTL电平。
- 通信波特率为9600,数据位8位,无奇偶校验,停止位为1。
- 蓝牙功能:
- 支持蓝牙5.1,包括经典蓝牙(BR+EDR)和低功耗蓝牙(BLE)。
- 适用于不同的功耗要求,提供稳定的无线通信能力。
3. 语音模块的使用步骤
Step 1:硬件连接
首先,我们需要正确连接模块的引脚。以下是模块关键引脚的定义:
- VCC:电源输入(3-5.5V)
- GND:接地
- TX/RX:用于UART通信的发送和接收引脚
- MIC+:麦克风输入
- SPK1/SPK2:用于连接扬声器的端口
Step 2:串口配置
通过UART接口进行模块的控制。在控制代码中,需要设定UART的通讯格式:
- 波特率:9600
- 数据位:8位
- 校验:无
- 停止位:1位
指令格式如下(以十六进制形式发送):
起始码 长度 方向 动作ID 校验和 结束码
0xFE 0x04 0x00 0xXX 0xXX 0xFD
例如,当发送开机播报指令时,具体命令为 FE 04 00 00 02 FD。
Step 3:词条命令实现
模块支持多种参考词条,通过这些词条可以控制设备的行为。例如:
- 打开灯光:命令词“打开灯光”,对应的串口输出为
FE 04 00 03 05 FD。 - 关闭灯光:命令词“关闭灯光”,对应的串口输出为
FE 04 00 04 06 FD。
这些词条可以定制,开发者可以根据项目需求调整命令词条来实现不同的控制功能。
4. 应用案例:智能台灯
我们以智能台灯的开发为例,演示如何利用 LSYT201B 语音模块实现语音控制:
- 硬件准备:将模块连接到台灯的控制电路,确保电源、扬声器和麦克风正确连接。
- 初始化模块:开机时,模块将播报“欢迎使用雷龙智能台灯”。
- 语音控制:通过“你好小龙”进行唤醒,用户可以发出诸如“打开灯光”、“关闭灯光”等指令,模块将通过UART协议发送控制信号。
5. 小结
通过 LSYT201B 语音模块,我们可以快速实现设备的语音控制功能。这不仅提高了用户的交互体验,还大大提升了产品的智能化水平。未来,随着语音识别算法的不断优化,这类语音模块在智能家居、玩具和其他消费电子领域将会有更加广泛的应用。
希望这篇博客可以帮助开发者更好地理解和使用 LSYT201B 语音模块。更多详细的技术参数和使用方法,可以参考官方文档和具体的开发手册。
相关文章:
使用语音模块的开发智能家居产品(使用雷龙LSYT201B 语音模块)
在这篇博客中,我们将探讨如何使用 LSYT201B 语音模块 进行智能设备的语音交互开发。通过这个模块,我们可以实现智能设备的语音识别和控制功能,为用户带来更为便捷和现代的交互体验。 1. 语音模块介绍 LSYT201B 是一个基于“芯片算法”的语音…...
深入理解支持向量机:从基本原理到实际应用
第6章 支持向量机 在本章中,我们将深入探讨支持向量机(SVM)这一强大的分类算法。SVM在模式识别和机器学习领域广泛应用,尤其在处理高维数据时表现出色。我们将依次讨论间隔与支持向量、对偶问题、核函数、间隔与正则化、支持向量…...
每天一题:洛谷P2041分裂游戏
题目描述 有一个无限大的棋盘,棋盘左下角有一个大小为 n 的阶梯形区域,其中最左下角的那个格子里有一枚棋子。你每次可以把一枚棋子“分裂”成两枚棋子,分别放在原位置的上边一格和右边一格。(但如果目标位置已有棋子,…...
简单的 curl HTTP的POSTGET请求以及ip port连通性测试
简单的 curl HTTP的POST&GET请求以及ip port连通性测试 1. 需求 我们公司有一个演示项目,需要到客户那边进行项目部署,项目部署完成后我们需要进行项目后端接口的测试功能,但是由于客户那边么有条件安装类似于postman这种的测试工具&am…...
ubuntu下快捷键启动程序
背景:公司自开发的软件,经常需要启动,每次去找目录启动很麻烦,所以想快捷启动 方法1: 通过编辑.baserc启动 例如启动程序是toolA, 放在/home/user/software/目录下,那么在~/.baserc里面加入一行代码 al…...
Yii2 init 初始化脚本分析
脚本目的: init 脚本主要的作用是:从 environments 目录中复制配置文件,确保应用适配不同环境(例如开发、生产环境等)。 工作流程: 获取 $_SERVER 的 argv 参数 加载 environments/index.php 文件&#…...
深入理解gPTP时间同步过程
泛化精确时间协议(gPTP)是一个用于实现精确时间同步的协议,特别适用于分布式系统中需要高度协调的操作,比如汽车电子、工业自动化等。 gPTP通过同步主节点(Time Master)和从节点(Time Slave)的时钟,实现全局一致的时间参考。 以下是gPTP实现主从时间同步的详细过程:…...
基于阿里云服务的移动应用日志管理方案—日志的上传、下载、存档等
前言 如题,基于阿里云服务(ECS、OSS)实现 APP 的用户日志上传以及日志下载的功能,提高用户反馈问题到研发去分析、定位、解决问题的整个工作流的效率。 术语 ECS: 云服务器ECS(Elastic Compute Service)…...
Python浪漫之画星星
效果图(动态的哦!): 完整代码(上教程): import turtle import random import time # 导入time模块# 创建一个画布 screen turtle.Screen() screen.bgcolor("red")# 创建一个海龟&a…...
Android使用协程实现自定义Toast弹框
Android使用协程实现自定义Toast弹框 最近有个消息提示需要显示10s,刚开始使用协程写了一个shoowToast方法,传入消息内容、显示时间和toast显示类型即可,以为能满足需求,结果测试说只有5s,查看日志和源码发现Android系统中Toa…...
git diff命令详解
git diff 是 Git 中非常常用的命令,用于比较不同版本的文件改动。可以比较工作区、暂存区、或者提交之间的差异。下面是对 git diff 常用场景的详细解释: 1. git diff 当你执行 git diff 时,它会显示工作区与暂存区之间的差异,也…...
Vue 插槽:组件通信的“隐形通道”
在 Vue 中,插槽(slot)是实现组件内容分发的机制,允许我们将子组件的内容传递给父组件,从而提升组件的可复用性和灵活性。插槽的本质是通过将父组件内容传递到子组件指定的插槽位置,使得子组件在渲染时可以动…...
react1816中的setState同步还是异步的深层分析
setState 是 react 中更新 UI 的唯一方法,其内部实现原理如下: 调用 setState 函数时,React 将传入的参数对象加入到组件的更新队列中。React 会调度一次更新(reconciliation),在调度过程中,Re…...
【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第七篇-体积纹理绘制】
我们前几篇已经完成了渲染部分,现在终于开始做动态绘制功能了 之前使用的是这样一个体积雾的切片图,那么现在要做的就是动态编辑它 首先,让我们简单了解一下它是如何运作的: 开始绘制画布以渲染目标,并将材质绘制到画…...
Linux的环境搭建
目录 1、linux的简单介绍 2、搭建linux环境 2.1 linux的环境安装 2.2 使用Xshell远程登入linux 2.2.1 Xshell免密登入 2.3 windows与Xshell与linux云服务器的关系 1、linux的简单介绍 linux操作系统 为 部分汇编 C语言编写 的操作系统 源代码公开(开源),官…...
WPF+Mvvm案例实战(五)- 自定义雷达图实现
文章目录 1、项目准备1、创建文件2、用户控件库 2、功能实现1、用户控件库1、控件样式实现2、数据模型实现 2、应用程序代码实现1.UI层代码实现2、数据后台代码实现3、主界面菜单添加1、后台按钮方法改造:2、按钮添加:3、依赖注入 3、运行效果4、源代码获…...
网络爬虫-Python网络爬虫和C#网络爬虫
爬虫是一种从互联网抓取数据信息的自动化程序,通过 HTTP 协议向网站发送请求,获取网页内容,并通过分析网页内容来抓取和存储网页数据。爬虫可以在抓取过程中进行各种异常处理、错误重试等操作,确保爬取持续高效地运行 1、Python网…...
如何有效解除TikTok账号间的IP关联
在当今社交媒体环境中,TikTok凭借其独特的短视频形式吸引了数以亿计的用户。对许多内容创作者而言,运营多个账号是获取更大曝光和丰富内容的有效策略。然而,如何避免这些账号之间的IP关联,以防止被平台识别并封禁,成为…...
Python自省机制
Python 自省机制 Python 自省(Introspection)是一种动态检查对象的能力,使得开发者可以在运行时获取对象的相关信息,比如属性、方法、类型等。自省机制让 Python 具备了更强的动态性和灵活性,便于调试和开发。 自省&…...
wgan-gp 对连续变量 训练,6万条数据,训练结果不错,但是到局部的时候,拟合不好,是否可以对局部数据也进行计算呢
Wasserstein GAN with Gradient Penalty (WGAN-GP) 是一种改进的生成对抗网络(GAN),它通过引入梯度惩罚来改进训练过程,从而提高生成模型的稳定性和质量。如果你在使用WGAN-GP对连续变量进行训练时,发现整体训练结果不…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
