定西市党政廉风建设网站/市场调研
【1】引言
前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于:
python学opencv|读取图像-CSDN博客
python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客
实际上都还是简单的图像操作,在此基础上,我们尝试对图像进行识别。比如在一堆图像里,找出和模板图像最相似的目标图像,这就是本次文章想要学习的目标: cv.matchTemplate()函数。
【2】官网教程
点击下方链接,直达cv.matchTemplate()函数的官网教程:
OpenCV: Object Detection
官网对cv.matchTemplate()函数的解释为:
图1 cv.matchTemplate()函数的官网教程
官网对cv.matchTemplate()函数的参数解释为:
void cv::matchTemplate (
InputArray image, #供匹配的图像
InputArray templ, #匹配参照的模板
OutputArray result, #匹配结果
int method, #匹配方法
InputArray mask = noArray() ) #掩模矩阵,默认即可,不是此次重点
为对匹配效果进行标记,还需要读取匹配结果,使用cv2.minMaxLoc()函数,点击下方链接可以直达官网说明页面:
OpenCV: Operations on arrays
官网对cv2.minMaxLoc()函数说明页面的相关解释为:
图2 cv.minMaxLoc()函数的官网教程
官网对cv.matchTemplate()函数的参数解释为:
void cv::minMaxLoc (
const SparseMat & a, #输入数据
double * minVal, #最小值
double * maxVal, #最大值
int * minIdx = 0, #最小坐标
int * maxIdx = 0 ) #最大坐标
【3】代码测试
首先引入相关模块和图像:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcm = cv.imread('srcm.png') #读取图像srcx.png
srcg = cv.imread('srcg.png') #读取图像srcp.png
srcc = cv.imread('srcc.png') #读取图像srcp.png
rows,cols,cans=srcg.shape #读取图像属性
rowsc,colsc,cansc=srcc.shape #读取图像属性
在这里,以srcm为待匹配图像,srcg和srcc为模板图像,也就是需要匹配两个。
然后进行图像匹配操作:
#匹配结果
results=cv.matchTemplate(srcm,srcg,cv.TM_CCORR_NORMED)
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED)
之后读取匹配结果以备做标记:
#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)
做标记一般用方框,所以需要调用cv2.rectangle()函数。相关文章的学习链接为:python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形-CSDN博客
这个函数要两个坐标点,所以还需要自定义新的坐标点:
#取最大坐标
resultPoint1=maxLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint3=",resultPoint3)
之后及时做标记、显示匹配效果:
#作标记
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('srcg ', srcg)
cv.imshow('srcc ', srcc)#窗口控制
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
程序运行相关的图像有:
图3 srcm.png
图4 模板srcg.png
图5 模板srcc.png
图6 匹配效果srcgc.png
图6为程序运行后的匹配效果,可见猫猫头和女孩都匹配成功了。
【4】细节说明
图6中给猫猫头增加了一个圆圈标记,是为了增强对照,增加圆圈标记的相关文章链接为:
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶_opencv circle-CSDN博客
【5】总结
掌握了python+opencv实现使用cv.matchTemplate()函数实现最佳图像匹配的技巧。
相关文章:

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…...

通信方式、点对点通信、集合通信
文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!通信实现方式:机器内通信、机器间通信通信实现方式:通讯协调通信实现方式:机器内通信:PCIe通信实现方式:机器内通信:NVLink通信实现…...

TCP编程
1.socket函数 int socket(int domain, int type, int protocol); 头文件:include<sys/types.h>,include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...

OpenAI 实战进阶教程 - 第七节: 与数据库集成 - 生成 SQL 查询与优化
内容目标 学习如何使用 OpenAI 辅助生成和优化多表 SQL 查询了解如何获取数据库结构信息并与 OpenAI 结合使用 实操步骤 1. 创建 SQLite 数据库示例 创建数据库及表结构: import sqlite3# 连接 SQLite 数据库(如果不存在则创建) conn sq…...

Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。 Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照…...

QT交叉编译环境搭建(Cmake和qmake)
介绍一共有两种方法(基于qmake和cmake): 1.直接调用虚拟机中的交叉编译工具编译 2.在QT中新建编译套件kits camke和qmake的区别:CMake 和 qmake 都是自动化构建工具,用于简化构建过程,管理编译设置&…...

Turing Complete-成对的麻烦
这一关是4个输入,当输入中1的个数大于等于2时,输出1。 那么首先用个与门来检测4个输入中,1的个数是否大于等于2,当大于等于2时,至少会有一个与门输出1,所以再用两级或门讲6个与门的输出取或,得…...

寒假刷题Day20
一、80. 删除有序数组中的重复项 II class Solution { public:int removeDuplicates(vector<int>& nums) {int n nums.size();int stackSize 2;for(int i 2; i < n; i){if(nums[i] ! nums[stackSize - 2]){nums[stackSize] nums[i];}}return min(stackSize, …...

deepseek 本地化部署和小模型微调
安装ollama 因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报 所以ollama使用镜像方式进行部署, 拉取镜像ollama/ollama 启动命令 docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 查看ollama 是否启动…...

【Java异步编程】基于任务类型创建不同的线程池
文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点: 降低资源消耗:线程是稀缺资源,如果无限…...

makailio-alias_db模块详解
ALIAS_DB 模块 作者 Daniel-Constantin Mierla micondagmail.com Elena-Ramona Modroiu ramonaasipto.com 编辑 Daniel-Constantin Mierla micondagmail.com 版权 © 2005 Voice Sistem SRL © 2008 asipto.com 目录 管理员指南 概述依赖 2.1 Kamailio 模块 2.2 外…...

文字显示省略号
多行文本溢出显示省略号...

[LeetCode] 字符串完整版 — 双指针法 | KMP
字符串 基础知识双指针法344# 反转字符串541# 反转字符串II54K 替换数字151# 反转字符串中的单词55K 右旋字符串 KMP 字符串匹配算法28# 找出字符串中第一个匹配项的下标#459 重复的子字符串 基础知识 字符串的结尾:空终止字符00 char* name "hello"; …...

从零开始部署Dify:后端与前端服务完整指南
从零开始部署Dify:后端与前端服务完整指南 一、环境准备1. 系统要求2. 项目结构 二、后端服务部署1. 中间件启动(Docker Compose)2. 后端环境配置3. 依赖安装与数据库迁移4. 服务启动 三、前端界面搭建1. 环境配置2. 服务启动 四、常见问题排…...

springboot中路径默认配置与重定向/转发所存在的域对象
Spring Boot 是一种简化 Spring 应用开发的框架,它提供了多种默认配置和方便的开发特性。在 Web 开发中,路径配置和请求的重定向/转发是常见操作。本文将详细介绍 Spring Boot 中的路径默认配置,并解释重定向和转发过程中存在的域对象。 一、…...

二叉树——429,515,116
今天继续做关于二叉树层序遍历的相关题目,一共有三道题,思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了,变成了N叉树,也就是该树每一个节点的子节点数量不确定,可能为2&a…...

Leetcode 3444. Minimum Increments for Target Multiples in an Array
Leetcode 3444. Minimum Increments for Target Multiples in an Array 1. 解题思路2. 代码实现 题目链接:3444. Minimum Increments for Target Multiples in an Array 1. 解题思路 这一题我的思路上就是一个深度优先遍历,考察target数组当中的每一个…...

分享半导体Fab 缺陷查看系统,平替klarity defect系统
分享半导体Fab 缺陷查看系统,平替klarity defect系统;开发了半年有余。 查看Defect Map,Defect image,分析Defect size,defect count trend. 不用再采用klarity defect系统(license 太贵) 也可以…...

Java基础——分层解耦——IOC和DI入门
目录 三层架构 Controller Service Dao 编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理? 容器怎样才能提供依赖的bean对象呢? 三层架构 Controller 控制…...

DeepSeek-R1 本地部署教程(超简版)
文章目录 一、DeepSeek相关网站二、DeepSeek-R1硬件要求三、本地部署DeepSeek-R11. 安装Ollama1.1 Windows1.2 Linux1.3 macOS 2. 下载和运行DeepSeek模型3. 列出本地已下载的模型 四、Ollama命令大全五、常见问题解决附:DeepSeek模型资源 一、DeepSeek相关网站 官…...

Vue3学习笔记-模板语法和属性绑定-2
一、文本插值 使用{ {val}}放入变量,在JS代码中可以设置变量的值 <template><p>{{msg}}</p> </template> <script> export default {data(){return {msg: 文本插值}} } </script> 文本值可以是字符串,可以是布尔…...

csapp笔记3.6节——控制(1)
本节解决了x86-64如何实现条件语句、循环语句和分支语句的问题 条件码 除了整数寄存器外,cpu还维护着一组单个位的条件码寄存器,用来描述最近的算数和逻辑运算的某些属性。可检测这些寄存器来执行条件分支指令。 CF(Carry Flag)…...

PYH与MAC的桥梁MII/MIIM
在学习车载互联网时,看到了一句话,Processor通过DMA直接存储访问与MAC之间进行数据的交互,MAC通过MII介质无关接口与PHY之间进行数据的交互。常见的以太网硬件结构是,将MAC集成进Processor芯片,将PHY留在Processor片外…...

国内flutter环境部署(记录篇)
设置系统环境变量 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn使用以下命令下载flutter镜像 git clone -b stable https://mirror.ghproxy.com/https://github.com/<github仓库地址>#例如flutter仓…...

选择排序_75. 颜色分类
75. 颜色分类 - 力扣(LeetCode) 题目不追求稳定 可以选择选择排序 这是我没看教程代码之前写的 有点复杂了 我还把元素后移了 class Solution { public:void sortColors(vector<int>& nums) {int min_num_index -1;int min_num 3;for(int i…...

C++ Primer 标准库vector
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

C# 数组和列表的基本知识及 LINQ 查询
数组和列表的基本知识及 LINQ 查询 一、基本知识二、引用命名空间声明三、数组3.1、一维数组3.2、二维数组3.3、不规则数组 Jagged Array 四、列表 List4.1、一维列表4.2、二维列表 五、数组和列表使用 LINQ的操作和运算5.1、一维 LIST 删除所有含 double.NaN 的行5.2、一维 LI…...

大厂面试题备份20250201
20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官,就舔着苟过去,入职大概率见不着他,但一二面遇到,反问环节就主动说不够match,让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

w191教师工作量管理系统的设计与实现
🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...

Git 版本控制:基础介绍与常用操作
目录 Git 的基本概念 Git 安装与配置 Git 常用命令与操作 1. 初始化本地仓库 2. 版本控制工作流程 3. 分支管理 4. 解决冲突 5. 回退和撤销 6. 查看提交日志 前言 在软件开发过程中,开发者常常需要在现有程序的基础上进行修改和扩展。但如果不加以管理&am…...