非线性最小二乘
非线性最小二乘
目录
文章目录
- 非线性最小二乘
- 目录 @[toc]
- 1 非线性最小二乘估计
- 3 非线性最小二乘的实现
文章目录
- 非线性最小二乘
- 目录 @[toc]
- 1 非线性最小二乘估计
- 3 非线性最小二乘的实现
1 非线性最小二乘估计
在经典最小二乘法估计中,假定被解释变量的条件期望是关于参数的线性函数,例如
E ( y ∣ x ) = a + b x E(y|x) = a+bx E(y∣x)=a+bx
其中 a , b a,b a,b为待估参数, E ( y ∣ x ) E(y|x) E(y∣x)是关于参数 a , b a,b a,b的线性函数。但 E ( y ∣ x ) E(y|x) E(y∣x)是关于参数的非线性函数,则利用ols求出的正规方程组没有解析解。只能通过相关数值计算。考虑一个简单的非线性模型
Y i = β X 1 i + β 2 X 2 i + ε i Y_{i}=\beta X_{1 i}+\beta^{2} X_{2 i}+\varepsilon_{i} Yi=βX1i+β2X2i+εi
其中扰动项 ε i \varepsilon_i εi满足 E ( ε i ) = 0 , var ( ε i ) = σ 2 \mathrm{E}\left(\varepsilon_{i}\right)=0,\operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2} E(εi)=0,var(εi)=σ2,且为独立同分布。其残差平方和为
S ( β ) = ∑ i = 1 n ε i 2 = ∑ i = 1 n [ Y i − f ( X i , β ) ] 2 = ∑ i = 1 n [ Y i − β X 1 i − β 2 X 2 i ] 2 \begin{aligned} S(\beta) &=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}, \beta\right)\right]^{2} \\ &=\sum_{i=1}^{n}\left[Y_{i}-\beta X_{1 i}-\beta^{2} X_{2 i}\right]^{2} \end{aligned} S(β)=i=1∑nεi2=i=1∑n[Yi−f(Xi,β)]2=i=1∑n[Yi−βX1i−β2X2i]2
为了使回归线尽可能接近观测值,要求残差平方和最小。根据微积分的知识
d S d β = 2 ∑ i = 1 n [ Y i − f ( X i , β ) ] ( − d f ( X i , β ) d β ) = 2 ∑ i = 1 n [ Y i − β X 1 i − β 2 X 2 i ] [ − X 1 i − 2 β X 2 i ] = 0 \begin{aligned} \frac{\mathrm{d} S}{\mathrm{~d} \beta} &=2 \sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}, \beta\right)\right]\left(-\frac{\mathrm{d} f\left(X_{i}, \beta\right)}{\mathrm{d} \beta}\right) \\ &=2 \sum_{i=1}^{n}\left[Y_{i}-\beta X_{1 i}-\beta^{2} X_{2 i}\right]\left[-X_{1 i}-2 \beta X_{2 i}\right]=0 \end{aligned} dβdS=2i=1∑n[Yi−f(Xi,β)](−dβdf(Xi,β))=2i=1∑n[Yi−βX1i−β2X2i][−X1i−2βX2i]=0
整理得:
2 β 3 ∑ i = 1 n X 2 i 2 + 3 β 2 ∑ i = 1 n X 1 i X 2 i + β ( ∑ i = 1 n X 1 i 2 − 2 ∑ i = 1 n X 2 i Y i ) − ∑ i = 1 n X 1 i Y i = 0 2 \beta^{3} \sum_{i=1}^{n} X_{2 i}^{2}+3 \beta^{2} \sum_{i=1}^{n} X_{1 i} X_{2 i}+\beta\left(\sum_{i=1}^{n} X_{1 i}^{2}-2 \sum_{i=1}^{n} X_{2 i} Y_{i}\right)-\sum_{i=1}^{n} X_{1 i} Y_{i}=0 2β3i=1∑nX2i2+3β2i=1∑nX1iX2i+β(i=1∑nX1i2−2i=1∑nX2iYi)−i=1∑nX1iYi=0
这是关于参数 β \beta β的三次函数。尽管三次函数存在解析解(利用卡丹或盛金公式),其结果极为复杂。若上述三次方程存在实根 β i ( i = 1 , 2 , 3 ) \beta_i(i=1,2,3) βi(i=1,2,3)(最多三个),则将 β i \beta_i βi代入残差平方和,取 S ( β ) S(\beta) S(β)最小所对应的 β i \beta_i βi。上述例子中,被解释变量条件期望是关于参数的二次函数,如果将这种函数形式改为指数、对数或三角函数形式,则一般不存在解析解。
因此,数值分析自然成为解决上述问题的有力武器。考虑一般化的非线性回归问题,设总体回归模型满足
Y = f ( X , β ) + ε Y=f(X, \beta)+\varepsilon Y=f(X,β)+ε
对应的残差平方和为
S ( β ) = ∑ i = 1 n [ Y i − f ( X i , β ) ] 2 S(\beta)=\sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}, \beta\right)\right]^{2} S(β)=i=1∑n[Yi−f(Xi,β)]2
要使其最小化,需要满足一阶条件
d S d β = − 2 [ ∑ i = 1 n [ Y i − f ( X i , β ) ] ( − d f ( X i , β ) d β ) ] = 0 \frac{\mathrm{d} S}{\mathrm{~d} \beta}=-2\left[\sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}, \beta\right)\right]\left(-\frac{\mathrm{d} f\left(X_{i}, \boldsymbol{\beta}\right)}{\mathrm{d} \beta}\right)\right]=0 dβdS=−2[i=1∑n[Yi−f(Xi,β)](−dβdf(Xi,β))]=0
显然,上述问题不存在解析解,因此考虑对 f ( X i , β ) f(X_i, \beta) f(Xi,β)进行一阶泰勒展开。设参数向量 β \beta β的初始值为 β 1 \beta_1 β1,则可以在 β 1 \beta_1 β1附近找到函数 f ( X i , β ) f(X_i, \beta) f(Xi,β)使得
f ( X i , β ) ≈ f ( X i , β 1 ) + d f ( X i , β ) d β ∣ β = β 1 ( β − β 1 ) f\left(X_{i}, \beta\right) \approx f\left(X_{i}, \beta_{1}\right)+\frac{\mathrm{d} f\left(X_{i}, \beta\right)}{\mathrm{d} \beta} \mid_{\beta = \beta_{1}}\left(\beta-\beta_{1}\right) f(Xi,β)≈f(Xi,β1)+dβdf(Xi,β)∣β=β1(β−β1)
记 d f ( X i , β ) d β ∣ β 1 ≈ f ( X i , β ) − f ( X , β ) β − β 1 \left.\frac{\mathrm{d} f\left(X_{i}, \beta\right)}{\mathrm{d} \beta}\right|_{\beta_{1}} \approx \frac{f\left(X_{i}, \beta\right)-f(X, \beta)}{\beta-\beta_{1}} dβdf(Xi,β) β1≈β−β1f(Xi,β)−f(X,β),简记 X ~ i ( β 1 ) = d f ( X i , β ) d β ∣ β 1 \widetilde{X}_{i}\left(\beta_{1}\right)=\left.\frac{\mathrm{d} f\left(X_{i}, \beta\right)}{\mathrm{d} \beta}\right|_{\beta_{1}} X i(β1)=dβdf(Xi,β) β1,则
S ( β ) = ∑ i = 1 n [ Y i − f ( X i , β 1 ) − X ~ i ( β 1 ) ( β − β 1 ) ] 2 = ∑ i = 1 n [ Y ~ i ( β 1 ) − X i ( β 1 ) β ] 2 \begin{aligned} S(\beta) &=\sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}, \beta_{1}\right)-\widetilde{X}_{i}\left(\beta_{1}\right)\left(\beta-\beta_{1}\right)\right]^{2} \\ &=\sum_{i=1}^{n}\left[\widetilde{Y}_{i}\left(\beta_{1}\right)-X_{i}\left(\beta_{1}\right) \beta\right]^{2} \end{aligned} S(β)=i=1∑n[Yi−f(Xi,β1)−X i(β1)(β−β1)]2=i=1∑n[Y i(β1)−Xi(β1)β]2
其中
Y ~ i ( β 1 ) = Y i − f ( X i , β 1 ) + X ~ i ( β 1 ) β 1 \widetilde{Y}_{i}\left(\beta_{1}\right)=Y_{i}-f\left(X_{i}, \beta_{1}\right)+\widetilde{X}_{i}\left(\beta_{1}\right) \beta_{1} Y i(β1)=Yi−f(Xi,β1)+X i(β1)β1
给定初始值向量 β i \beta_i βi,则 Y ~ i ( β 1 ) \widetilde{Y}_{i}\left(\beta_{1}\right) Y i(β1)与 X ~ i ( β 1 ) \widetilde{X}_{i}\left(\beta_{1}\right) X i(β1)可计算,从而求出最小残差平方和。 S ( β ) S(\beta) S(β)对应的回归方程为
Y ~ i ( β 1 ) = X ~ i ( β ) β + ε i \widetilde{Y}_{i}\left(\beta_{1}\right)=\widetilde{X}_{i}(\beta) \beta+\varepsilon_{i} Y i(β1)=X i(β)β+εi
最小二乘估计量为
β 2 = [ X ~ ( β 1 ) ′ X ~ ( β 1 ) ] − 1 X ~ ( β 1 ) ′ Y ~ ( β 1 ) \beta_{2}=\left[\widetilde{X}\left(\beta_{1}\right)^{\prime} \widetilde{X}\left(\beta_{1}\right)\right]^{-1} \widetilde{X}\left(\beta_{1}\right)^{\prime} \widetilde{Y}\left(\beta_{1}\right) β2=[X (β1)′X (β1)]−1X (β1)′Y (β1)
其中
X ~ ( β 1 ) = [ X ~ 1 ( β 1 ) ⋮ X ~ n ( β 1 ) ] , Y ^ ( β 1 ) = [ Y ~ 1 ( β 1 ) ⋮ Y ~ n ( β 1 ) ] \widetilde{X}\left(\beta_{1}\right)=\left[\begin{array}{c} \widetilde{X}_{1}\left(\beta_{1}\right) \\ \vdots \\ \widetilde{X}_{n}\left(\beta_{1}\right) \end{array}\right], \quad \hat{Y}\left(\beta_{1}\right)=\left[\begin{array}{c} \widetilde{Y}_{1}\left(\beta_{1}\right) \\ \vdots \\ \widetilde{Y}_{n}\left(\beta_{1}\right) \end{array}\right] X (β1)= X 1(β1)⋮X n(β1) ,Y^(β1)= Y 1(β1)⋮Y n(β1)
此时我们求出 β 2 \beta_2 β2,再将 β 2 \beta_2 β2作为初始值依次迭代计算,得到关于向量参数 β i \beta_i βi的一个序列,当且仅当
∣ ∣ β ( k + 1 ) − β ( k ) ∣ ∣ < δ ||\beta^{(k+1)}-\beta^{(k)}||<\delta ∣∣β(k+1)−β(k)∣∣<δ
其中 δ > 0 \delta>0 δ>0为事先预定的绝对误差。不难得到,参数 β \beta β满足递推关系
β n + 1 = [ X ~ ( β n ) ′ X ~ ( β n ) ] − 1 X ~ ( β n ) ′ Y ~ ( β n ) = [ X ~ ( β n ) ′ X ~ ( β n ) ] − 1 X ~ ( β n ) ′ [ Y − f ( X ~ , β n ) + X ~ ( β n ) β n ] = β n + [ X ~ ( β n ) ′ X ~ ( β n ) ] − 1 X ~ ( β n ) ′ [ Y − f ( X , β n ) ] \begin{aligned} \boldsymbol{\beta}_{n+1} &=\left[\widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)\right]^{-1} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime} \widetilde{Y}\left(\boldsymbol{\beta}_{n}\right) \\ &=\left[\widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)\right]^{-1} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime}\left[\boldsymbol{Y}-f\left(\widetilde{X}, \boldsymbol{\beta}_{n}\right)+\widetilde{X}\left(\boldsymbol{\beta}_{n}\right) \boldsymbol{\beta}_{n}\right] \\ &=\boldsymbol{\beta}_{n}+\left[\widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)\right]^{-1} \widetilde{X}\left(\boldsymbol{\beta}_{n}\right)^{\prime}\left[Y-f\left(X, \boldsymbol{\beta}_{n}\right)\right] \end{aligned} βn+1=[X (βn)′X (βn)]−1X (βn)′Y (βn)=[X (βn)′X (βn)]−1X (βn)′[Y−f(X ,βn)+X (βn)βn]=βn+[X (βn)′X (βn)]−1X (βn)′[Y−f(X,βn)]
通过证明,随着样本容量 n → ∞ n\to\infty n→∞,参数 β \beta β估计量服从渐进正态分布,即
β ~ ∼ N ( β , σ ^ 2 [ X ~ ( β ) ′ X ~ ( β ) ] − 1 ) , σ ^ 2 = S ( β ~ ) n − 1 \widetilde{\beta} \sim N\left(\beta, \hat{\sigma}^{2}\left[\widetilde{X}(\beta)^{\prime} \widetilde{X}(\beta)\right]^{-1}\right), \hat{\sigma}^{2}=\frac{S(\widetilde{\beta})}{n-1} β ∼N(β,σ^2[X (β)′X (β)]−1),σ^2=n−1S(β )
3 非线性最小二乘的实现
在R语言中,可以适用nls函数实现非线性最小二乘法。以C-D函数为例,
设一国产出取决于资本、劳动与全要素的投入,即
Y = A K α L β μ Y = AK^{\alpha}L^{\beta}\mu Y=AKαLβμ
下面通过R代码运行实现对参数 α , β \alpha,\beta α,β的估计
t = 1:12 #时间设定
Y=c(26.74, 34.81, 44.72, 57.46, 73.84, 88.45, 105.82,126.16, 150.9, 181.6, 204.3, 222.8) #产出序列
K=c(23.66,30.55,38.12,46.77,56.45,67.15,78.92,91.67,105.5, 121.3, 128.6, 132.5) #资本序列
L=c(26, 28, 32, 36, 41, 45, 48, 52, 56, 60, 66, 70) #劳动投入序列
Cdnls <- nls(Y~A*K^a*L^b,start = list(A = 0.1,a = 0.5,b = 0.5)) #非线性最小二乘,start为参数初始值向量
summary(Cdnls)
#-------------------运行结果---------------------------
#Formula: Y ~ A * K^a * L^b
Parameters:Estimate Std. Error t value Pr(>|t|)
A 0.1129 0.0159 7.12 5.6e-05 ***
a 0.6568 0.0652 10.07 3.4e-06 ***
b 1.0298 0.1044 9.86 4.0e-06 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 1.7 on 9 degrees of freedomNumber of iterations to convergence: 9
Achieved convergence tolerance: 7.55e-06
结果显示,参数 α = 0.6568 \alpha = 0.6568 α=0.6568, β = 1.0298 \beta = 1.0298 β=1.0298。对比直接取对数的OLS,即估计
l n Y = l n A + α l n K + β l n L + e lnY = lnA+\alpha lnK+\beta lnL+e lnY=lnA+αlnK+βlnL+e
CDlm <- lm(log(Y)~log(K)+log(L)) #对数形式
summary(CDlm)
#--------------------运行结果--------------
Call:
lm(formula = log(Y) ~ log(K) + log(L))Residuals:Min 1Q Median 3Q Max
-0.02714 -0.00595 -0.00118 0.00764 0.02557 Coefficients:Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.0737 0.2355 -8.80 1.0e-05 ***
log(K) 0.6258 0.0916 6.83 7.6e-05 ***
log(L) 1.0379 0.1621 6.40 0.00012 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.0173 on 9 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 0.999
F-statistic: 9.16e+03 on 2 and 9 DF, p-value: 1.29e-15
结果显示,参数 α = 0.6268 \alpha = 0.6268 α=0.6268, β = 1.0379 \beta = 1.0379 β=1.0379。因此,CD函数对数化的结果回归与非线性最小二乘回归的参数基本一致。但一些不能对数化的方程,非线性最小二乘的作用更为明显。考虑真实模型
y = 2 s i n ( x ) + 4 c o s ( x ) y = 2sin(x)+4cos(x) y=2sin(x)+4cos(x)
接下来我们进行仿真模拟
set.seed(123) #随机种子
x <- seq(1,100,by = 0.1) #1-100,步长为0.1
e <- rnorm(length(x),0,1) #长度为序列x的长度,服从标准正态分布的误差
y <- 2*sin(x)+4*cos(x)+e #实际观测的被解释变量
plot(x,y,type = "o") #打印散点图nls1 <- nls(y~a*sin(x)+b*cos(x),start = list(a = 0,b =0)) #非线性最小二乘,初始值设定为0,0
nls1
#-------------运行结果------------------
Nonlinear regression modelmodel: y ~ a * sin(x) + b * cos(x)data: parent.frame()a b
1.92 4.03 residual sum-of-squares: 974Number of iterations to convergence: 1
Achieved convergence tolerance: 6.73e-10
结果显示估计量 a = 1.92 a = 1.92 a=1.92, b = 4.03 b = 4.03 b=4.03,与总体参数 a = 2 , b = 4 a = 2,b = 4 a=2,b=4即为接近
参考文献
王斌会(2015).计量经济学建模及R语言应用[M].北京大学出版社
相关文章:

非线性最小二乘
非线性最小二乘 目录 文章目录 非线性最小二乘目录 [toc]1 非线性最小二乘估计3 非线性最小二乘的实现 1 非线性最小二乘估计 在经典最小二乘法估计中,假定被解释变量的条件期望是关于参数的线性函数,例如 E ( y ∣ x ) a b x E(y|x) abx E(y∣x)a…...

23.5.7总结(学习通项目思路)
项目: 1.登录修改:删除数据库中的状态,通过使用 ConcurrentHashMap来作为是否在线的判断,通过设定一个退出的按钮,发消息给服务端主动移除对应的值。 2.注册:增加了手机号的填写,正则判断&…...

如何生成api接口获取宝贝商品详情,商品详情接口,产品详情
API (Application Programming Interface)是指应用程序接口,它是一种通过编写一组统一的规则,开发一个软件来与其他应用程序进行通讯的技术。API可以方便应用程序之间的交流和数据共享,以及增强应用程序的功能。 在现代应用程序中࿰…...

微服务---Redis实用篇-黑马头条项目-登录功能(短信验证缓存,用户信息缓存)
黑马头条项目-登录功能(短信验证缓存,用户信息缓存) 1、短信登录 1.1、导入黑马点评项目 1.1.1 、导入SQL 1.1.2、有关当前模型 手机或者app端发起请求,请求我们的nginx服务器,nginx基于七层模型走的事HTTP协议,可以实现基于Lua直接绕开t…...

美国纽扣电池的包装电池盒必须附带警告标签16 CFR 第 1700.20
美国纽扣电池及硬币电池的包装、电池盒必须附带警告标签16 CFR 第 1700.20 美国要求在纽扣电池或硬币电池的包装上、电池盒上以及包含纽扣电池或硬币电池的消费品附带说明和手册上贴上警告标签。 商品法规、标准和要求纽扣电池和硬币电池以下所有项: 16 CFR 第 17…...

AcWing——方格迷宫(有点不一样的迷宫问题)
4943. 方格迷宫 - AcWing题库 1、题目 给定一个 n 行 m 列的方格矩阵。 行从上到下依次编号为 1∼n,列从左到右依次编号为 1∼m。 第 i 行第 j 列的方格表示为 (i,j)。 矩阵中的方格要么是空地(用 . 表示),要么是陷阱…...

《常规脉搏传输时间作为人体血压变化标志》阅读笔记
目录 一、论文摘要 二、论文十问 Q1: 论文试图解决什么问题? Q2: 这是否是一个新的问题? Q3: 这篇文章要验证一个什么科学假设? Q4: 有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员? …...

java学习之异常三
目录 一、throws 一、基本说明 二、使用细节 二、自定义异常 一、 基本概念 编辑二、自定义异常的步骤 三、实例 四、练习 三、throw和throws的区别 四、本章作业 第一道 第二题 第三题 第四题 一、throws 一、基本说明 package com.hspedu.throws_;import java.i…...

生产者向 Kafka 发送消息的执行流程
(1)生产者要往 Kafka 发送消息时,需要创建 ProducerRecoder,代码如下: ProducerRecord<String,String> record new ProducerRecoder<>("CostomerCountry","Precision Products","Fr…...

Linux命令·netstat
netstat命令用于显示与IP、TCP、UDP和ICMP协议相关的统计数据,一般用于检验本机各端口的网络连接情况。netstat是在内核中访问网络及相关信息的程序,它能提供TCP连接,TCP和UDP监听,进程内存管理的相关报告。 如果你的计算机有时候…...

《心安即是归处》读书笔记
目录 作者简介 经典摘录 一个人活在世界上,必须处理好三个关系 什么叫人生呢? 谈一下人性的问题 了解人生的意义与价值 人生之美 评断一本书的好与坏有什么标准呢? 知足知不足 作者简介 季羡林,随便查询一下作者简介&…...

C++:使用红黑树封装map和set
目录 一. 如何使用一颗红黑树同时实现map和set 二. 红黑树的节点插入操作 三. 红黑树迭代器的实现 3.1 begin()和end() 3.2 operator和operator-- 3.3 红黑树迭代器实现完整版代码 四. map和set的封装 附录:用红黑树封装map和set完整版代码 1. RBTree.h文件…...

Go 命令
目录 文章目录 go buildgo cleango fmtgo getgo installgo testgo toolgo generategodoc其它命令 go build 这个命令主要用于编译代码。在包的编译过程中,若有必要,会同时编译与之相关联的包。 如果是普通包,就像我们在1.2节中编写的mymath包…...

LEO、HW、LSO、LW 分别代表什么?
LEO :是 LogEndOffset 的简称,代表当前日志文件中下一条。HW:水位或水印一词,也可称为高水位 (high watermark) ,通常被用在流式处理领域 (flink、spark) ,以表征元素…...

问题 B: 跳石头(C++)(二分答案)
目录 1.题目描述 2.AC 1.题目描述 问题 B: 跳石头 时间限制: 1.000 Sec 内存限制: 128 MB提交 状态 题目描述 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点…...

bugku——变量1
拿到题目后是一串PHP代码,给到提示是flag在变量中,接下来进行代码审计 error_reporting(0):关闭错误报告 include “flag1.php”:包含flag1.php文件 highlight_file(_file_):页面进行语法高亮显示 isset($_GET[‘args’])…...

网络数据包丢失监控
什么是网络数据包 数据包或网络数据包是通过网络传输的小数据单元。顾名思义,这些是小的、离散的数据单元。单独来看,这些单位不一定有多大意义。它们只是正在传输的整体消息的一部分,这些消息已被组装成多个层。但是,当组合在一…...

Linux服务器安装部署MongoDB数据库 - 无公网IP远程连接
目录 前言 1. 配置Mongodb源 2. 安装MongoDB 3. 局域网连接测试 4. 安装cpolar内网穿透 5. 配置公网访问地址 6. 公网远程连接 7. 固定连接公网地址 8. 使用固定地址连接 转载自Cpolar Lisa文章:Linux服务器安装部署MongoDB数据库 - 无公网IP远程连接「内网…...

CSS面试题:30道含答案和代码示例的练习题
什么是 CSS?它的作用是什么? CSS(层叠样式表)是一种用于描述网页样式的语言。它的作用是控制网页的布局、字体、颜色、背景等方面的样式。如何在 HTML 页面中引入 CSS? 可以使用 标签将 CSS 文件引入到 HTML 页面中。例…...

时间轮的golang实践浅析
引言 下列代码模仿一段RPC请求的执行过程,执行后会有哪些问题: RPC代码示例答案:因为超时控制后未阻断后续请求,导致并发读写产生Panic思考:客户端发起 HTTP 请求后,如果在指定时间内没有收到服务器的响应…...

Linux命令_stress 快速模拟CPU、内存、磁盘消耗
ping的安装命令:apt-get install -y inetutils-ping 会遇到Unable to locate package inetutils-ping问题 正确的操作是: ** 这时候需要敲:apt-get update,这个命令的作用是:同步 /etc/apt/sources.list 和 /etc/apt/…...

可视化绘图技巧100篇分析篇(二)-生存曲线(LM曲线)
目录 前言 几个高频面试题目 roc曲线和生存曲线区别 生存曲线模型 生存曲线组件讲解...

UP主发车啦!撩人仙侠文系列,谁来管管这个反派啊!
本人书龄4年,平时很爱看小说,阅遍无数经典修仙文,熬夜党的最爱啊!!!!我心中的仙侠top,都是我的心头爱。 一般我都会跟朋友说这六本五星级仙侠好文,如果她们不看…...

K8S使用持久化卷存储到NFS(NAS盘)
参考文章:K8S-v1.20中使用PVC持久卷 - 知乎 目录 1、概念: 1.1 基础概念 1.2 PV的配置 1.2.1 静态PV配置 1.2.2 动态PV配置 1.2.3 PVC与PV的绑定 1.2.4 PVC及PV的使用 2 部署PV及PVC 2.1 所有K8S机器都需要安装NFS程序 2.2 仅针对需要暴露文件…...

一图看懂 multidict 模块:类似于字典的键值对集合,键可以多次出现,资料整理+笔记(大全)
本文由 大侠(AhcaoZhu)原创,转载请声明。 链接: https://blog.csdn.net/Ahcao2008 一图看懂 multidict 模块:类似于字典的键值对集合,键可以多次出现,资料整理笔记(大全) 🧊摘要🧊模…...

django CBV 与 DRF APIView源码分析
django CBV源码分析 在django框架中,视图层中的逻辑即可以使用函数处理也可以使用类进行处理,如果在视图层中使用函数处理请求,就是FBV(function base views),如果在视图层中使用类处理请求,就是CBV(class base views…...

沃尔玛入驻教程:中国卖家如何免费、快速入驻沃尔玛walmart.com?
作为一家全球知名的零售巨头,沃尔玛(Walmart)的在线商城walmart.com拥有庞大的消费者基础和巨大的商机。对于中国的卖家来说,入驻沃尔玛的平台是一个很好的机会,但是有没有什么方法可以免费、快速入驻呢?有…...

《花雕学AI》Poe 上的四种 AI 机器人,你该怎么选?ChatGPT、Sage、Claude 和 Dragonfly对比
虽然 ChatGPT 是一项革命性的技术,但它作为一个消费产品却有点失败。你可能会花很长时间等待 OpenAI 的聊天机器人加载,或者根本无法使用它,因为它太大了。就算你能用上它,它也很缓慢,而且它的界面也很丑陋。它甚至没有…...

localStorage
目录 localStorage与sessionStorage localStorage的Set与Get localStorage传递参数 localStorage与sessionStorage 现代浏览器提供了一种被称为"Web Storage APIs"(Web 存储接口)的机制,允许在同一浏览器的不同标签页之间共享数…...

二十五、SQL 数据分析实战(9个中等难度的SQL题目)
文章目录 题目1: App 使用频率分析题目2: App 下载情况统计题目3: 寻找活跃学习者题目4: 商品分类整理题目5: 商品销售分析题目6: 网约车司机收益统计题目7: 网站登录时间间隔统计题目8: 不同区域商品收入统计题目9: 信贷逾期情况统计 题目1: App 使用频率分析 现有一张用户使…...