当前位置: 首页 > news >正文

TDengine 部署与使用----时序数据库

官网

通过 Docker 快速体验 TDengine | TDengine 文档 | 涛思数据

docker安装

  拉取最新docker镜像

       docker pull tdengine/tdengine:latest

 

 然后执行

docker run -d -p 6030:6030 -p 6041:6041 -p 6043-6049:6043-6049 -p 6043-6049:6043-6049/udp tdengine/tdengine

查看容器是否启动  docker ps

 进入容器 docker exec -it <container name> bash

docker查看

创建库、表操作

 

安装客户端驱动 taosc

 

安装完成后,启动cmd;

 创建数据库

上述语句将创建一个名为 power 的库,这个库的数据将保留 365 天(超过 365 天将被自动删除),每 10 天一个数据文件,每个 VNode 的写入内存池的大小为 16 MB,对该数据库入会写 WAL 但不执行 FSYNC.

切换数据库

 

将当前连接里操作的库换为 power,否则对具体表操作前,需要使用“库名.表名”来指定库的名字。

建超级表:

CREATE STABLE meters (ts timestamp, current float, voltage int, phase float) TAGS (location binary(64), groupId int);

创建超级表时,需要提供表名(示例中为 meters),表结构 Schema,即数据列的定义。第一列必须为时间戳(示例中为 ts),其他列为采集的物理量(示例中为 current, voltage, phase),数据类型可以为整型、浮点型、字符串等。除此之外,还需要提供标签的 Schema (示例中为 location, groupId),标签的数据类型可以为整型、浮点型、字符串等。采集点的静态属性往往可以作为标签,比如采集点的地理位置、设备型号、设备组 ID、管理员 ID 等等。标签的 Schema 可以事后增加、删除、修改

创建表

TDengine 对每个数据采集点需要独立建表。与标准的关系型数据库一样,一张表有表名,Schema,但除此之外,还可以带有一到多个标签。创建时,需要使用超级表做模板,同时指定标签的具体值。以 表 1 中的智能电表为例,可以使用如下的 SQL 命令建表:

CREATE TABLE d1001 USING meters TAGS ("California.SanFrancisco", 2);

其中 d1001 是表名,meters 是超级表的表名,后面紧跟标签 Location 的具体标签值为 "California.SanFrancisco",标签 groupId 的具体标签值为 2。虽然在创建表时,需要指定标签值,但可以事后修改。详细细则请见 TDengine SQL 的表管理 章节。

TDengine 建议将数据采集点的全局唯一 ID 作为表名(比如设备序列号)。但对于有的场景,并没有唯一的 ID,可以将多个 ID 组合成一个唯一的 ID。不建议将具有唯一性的 ID 作为标签值。

自动建表​

在某些特殊场景中,用户在写数据时并不确定某个数据采集点的表是否存在,此时可在写入数据时使用自动建表语法来创建不存在的表,若该表已存在则不会建立新表且后面的 USING 语句被忽略。比如:

INSERT INTO d1001 USING meters TAGS ("California.SanFrancisco", 2) VALUES (NOW, 10.2, 219, 0.32);

上述 SQL 语句将记录(NOW, 10.2, 219, 0.32)插入表 d1001。如果表 d1001 还未创建,则使用超级表 meters 做模板自动创建,同时打上标签值 "California.SanFrancisco", 2

多列模型 vs 单列模型​

TDengine 支持多列模型,只要物理量是一个数据采集点同时采集的(时间戳一致),这些量就可以作为不同列放在一张超级表里。但还有一种极限的设计,单列模型,每个采集的物理量都单独建表,因此每种类型的物理量都单独建立一超级表。比如电流、电压、相位,就建三张超级表。

TDengine 建议尽可能采用多列模型,因为插入效率以及存储效率更高。但对于有些场景,一个采集点的采集量的种类经常变化,这个时候,如果采用多列模型,就需要频繁修改超级表的结构定义,让应用变的复杂,这个时候,采用单列模型会显得更简单。

对数据表操作

        插入

                INSERT INTO d1001 VALUES (NOW, 10.2, 219, 0.32);

        查询

                

 

 

相关文章:

TDengine 部署与使用----时序数据库

官网 通过 Docker 快速体验 TDengine | TDengine 文档 | 涛思数据 docker安装 拉取最新docker镜像 docker pull tdengine/tdengine:latest 然后执行 docker run -d -p 6030:6030 -p 6041:6041 -p 6043-6049:6043-6049 -p 6043-6049:6043-6049/udp tdengine/tdengine 查看容器…...

ShardingSphere系列四(Sharding-JDBC内核原理及核心源码解析)

文章目录 1. ShardingSphere内核解析1.1 解析引擎1.2 路由引擎1.3 改写引擎1.4 执行引擎1.5 归并引擎 2. ShardingSphere的SPI扩展点2.1 SPI机制2.2 ShardingSphere中的SPI扩展点2.3 实现自定义主键生成策略 3. ShardingSphere源码 1. ShardingSphere内核解析 ShardingSphere虽…...

【2023】华为OD机试真题全语言-题目0234-字符串重新排列

题目0234-字符串重新排列 题目描述 给定一个字符串s,s包括以空格分隔的若干个单词,请对s进行如下处理后输出: 单词内部调整:对每个单词字母重新按字典序排序单词间顺序调整: 统计每个单词出现的次数,并按次数降序排列次数相同,按单词长度升序排列次数和单词长度均相同…...

Springboot +Flowable,三种常见网关的使用(排他、并行、包容网关)(一)

一.简介 Flowable 中常用的网关主要有三种类型&#xff0c;分别是&#xff1a; 排他网关并行网关包容网关 下面来说下这三种的网关的概念和用法。 二.排他网关 排他网关&#xff0c;也叫互斥网关&#xff0c;截图如下&#xff1a; 排他网关有一个入口&#xff0c;多个有效…...

软考高项(一)信息化发展 ★重点集萃★

1、信息是确定性的增加。信息不是物质&#xff0c;也不是能力。 2、信息的特征与质量&#xff0c;主要包括&#xff1a;客观性、普遍性、无限性、动态性、相对性、依附性、变换性、传递性、层次性、系统性和转化性等。 3、信息的质量属性&#xff0c;主要包括&#xff1a;精确…...

大项目准备(2)

目录 中国十大最具发展潜力城市 docker是什么&#xff1f;能介绍一下吗&#xff1f; 中国十大最具发展潜力城市 按照人随产业走、产业决定城市兴衰、规模经济和交通成本等区位因素决定产业布局的基本逻辑&#xff0c;我们在《中国城市发展潜力排名&#xff1a;2022》研究报告…...

计算机网络【2】 子网掩码

学习大佬记下的笔记 https://zhuanlan.zhihu.com/p/163119376 "子网"掩码&#xff0c;顾名思义&#xff0c;它就是拿来划分子网的&#xff0c;更准确的说&#xff0c;划分子网的同时&#xff0c;还能通过它知道主机在子网里面的具体ip的具体地址。 子网掩码只有一个…...

linux发行家族和发行版及安装软件方式

在Linux平台下&#xff0c;软件包的类型可以划分为两类&#xff1a;源码包、二进制包&#xff1b; 一个软件要在Linux上执行&#xff0c;必须是二进制文件&#xff1b; 源码包&#xff1a;即程序软件的源代码&#xff08;一般也叫Tarball&#xff0c;即将软件的源码以tar打包后…...

FE_Vue学习笔记 条件渲染[v-show v-if] 列表渲染[v-for] 列表过滤 列表排序

1 条件渲染 v-show v-if 使用template可以使其里面的内容在html的结构中不变。条件渲染&#xff1a; v-if 1&#xff09;v-if“表达式” 2&#xff09;v-else-if“表达式” 3&#xff09;v-else {} 适用于&#xff1a;切换频率较低的场景。特点&#xff1a;不展示的DOM元素直…...

基于C++实现旅行线路设计

访问【WRITE-BUG数字空间】_[内附完整源码和文档] 系统根据风险评估&#xff0c;为旅客设计一条符合旅行策略的旅行线路并输出&#xff0c;系统能查询当前时刻旅客所处的地点和状态&#xff08;停留城市/所在交通工具&#xff09;。 实验内容和实验环境描述 1.1 实验内容 城…...

Lenovo m93 mini 电脑 Hackintosh 黑苹果efi引导文件

原文来源于黑果魏叔官网&#xff0c;转载需注明出处。&#xff08;下载请直接百度黑果魏叔&#xff09; 硬件型号驱动情况 主板Lenovo m93 mini 处理器Intel i5-4590T 2.20GHz (35w) 4-core/4-thread已驱动 内存8GB (2x4) DDR3 1600MHz已驱动 硬盘2.5" SSD Samsung 8…...

【论文阅读】COPA:验证针对中毒攻击的离线强化学习的稳健策略

COPA: Certifying Robust Policies for Offline Reinforcement Learning against Poisoning Attacks 作者&#xff1a;Fan Wu, Linyi Li, Chejian Xu 发表会议&#xff1a;2022ICRL 摘要 目前强化学习完成任务的水平已经和人类相接近&#xff0c;因此研究人员的目光开始转向…...

Java笔记_18(IO流)

Java笔记_18 一、IO流1.1、IO流的概述1.2、IO流的体系1.3、字节输出流基本用法1.4、字节输入流基本用法1.5、文件拷贝1.6、IO流中不同JDK版本捕获异常的方式 二、字符集2.1、GBK、ASCII字符集2.2、Unicode字符集2.3、为什么会有乱码2.4、Java中编码和解码的代码实现2.5、字符输…...

前端vue3一键打包发布

一键打包发布可以分为两种&#xff0c;一是本地代码&#xff0c;编译打包后发布至服务器&#xff0c;二是直接在服务器上拉去代码打包发布至指定目录中。 两种各有使用场景&#xff0c;第一种是前端开发自己调试发布用的比较多&#xff0c;第二种是测试或者其他人员用的多&…...

13 | visual studio与Qt的结合

1 前提 Qt 5.15.2 visual studio 2019 vsaddin 2.8 2 具体操作 2.1 visual studio tool 2.1.1 下载 https://visualstudio.microsoft.com/zh-hans/downloads/2.1.2 安装 开发...

纯手动搭建大数据集群架构_记录019_集群机器硬盘爆满了_从搭建虚拟机开始_做个200G的虚拟机---大数据之Hadoop3.x工作笔记0179

今天突然就发现,使用nifi的时候集群满了...气死了.. 而在vmware中给centos去扩容,给根目录扩容,做的时候,弄了一天...最后还是报错, 算了从头搭建一个200G的,希望这次够用吧.后面再研究一下扩容的问题. 2023-05-12 11:06:48 原来的集群的机器,硬盘太小了,扩容不知道怎么回事…...

变量大小:—揭开不同类型的字节数

变量大小&#xff1a;一一揭开不同类型的字节数 在编程中&#xff0c;我们会使用各种类型的变量来存储数据&#xff0c;但是你是否知道这些变量在内存中所占用的字节数是多少呢&#xff1f;随着不同编程语言和不同的操作系统&#xff0c;这些变量的字节数可能会有所不同。在本…...

23.自定义指令

像是 v-if,v-for,v-model 这些是官方指令&#xff0c;vue允许开发者自定义指令 目录 1 mounted 1.1 基本使用 1.2 第一个形参 1.3 第二个形参 2 updated 3 函数简写 4 全局自定义指令 1 mounted 当指令绑定到元素身上的时候&#xff0c;就会自动触发mounted()…...

OPNET Modeler 例程——停等协议的建模和仿真

文章目录 一、概述二、链路模型和包格式创建三、进程模型1.src 进程模型2.sink 进程模型 四、节点模型五、网络模型六、仿真结果 一、概述 本例程是在 OPNET Modeler 中对停等协议的建模和仿真&#xff0c;其中停等协议的操作过程如下&#xff1a; &#xff08;1&#xff09;发…...

JavaScript - 基础+WebAPI(笔记)

前言&#xff1a; 求关注&#x1f62d; 本篇文章主要记录以下几部分&#xff1a; 基础&#xff1a; 输入输出语法&#xff1b;数据类型&#xff1b;运算符&#xff1b;流程控制 - 分支语句&#xff1b;流程控制 - 循环语句&#xff1b;数组 - 基础&#xff1b;函数 - 基础&…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...