【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 完备集合经验模态分解原理
1.2 变分 模 态 分 解
1.3 GRU
📚2 运行结果
🎉3 参考文献
🌈4 Python代码实现
💥1 概述
1.1 完备集合经验模态分解原理
早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中
容易出现模态混叠现象。EEMD 分解方法的思想是:在原始信号中加入白噪声[16],使极值点分布更均衡;最终分量在EMD 的基础上进行集成平均而得。但是,这种方法具有计算量大且重构时残留噪音大的缺陷。CEEMDAN 是 EEMD 的改进算法。该算法通过添加有限次数的自适应白噪声,解决了集合平均次数限制下的重构误差较大的问题。
1.2 变分 模 态 分 解
变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量
混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过
程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。
1.3 GRU
循环神经网络(Recurrent neural network,RNN)是经典的神经网络之一。由于 RNN 隐藏层
在不同样本序列的同一个神经元之间存在记忆传递,因此 RNN 在处理时间序列的线性回归问题具有优势:即,可以将前一刻神经元受到的影响输送到下一次学习中。但是,传统的 RNN 在进行反向传播时,如果输入数据的序列比较长,就会出现梯度消失、梯度爆炸等问题。
长短期记忆网络(Long short term memory,LSTM)和 GRU 的优势,在于其通过“门”结构极大地避免梯度消失问题,可以有效地分析长期依赖关系。
LSTM 包含 3 个门结构:遗忘门,输入门、输出门[21]。GRU 在 LSTM 的基础上减少了单元中门的个数,化简了单元复杂度,因此其运行效果要好于 LSTM。GRU 是由更新门和重置门构成,其内部结构如图 1 所示。
📚2 运行结果
部分代码:
# 7.Predict Co-IMF0 by matrix-input GRU time0 = time.time() df_vmd_co_imf0['sum'] = df_integrate_result['co-imf0'] co_imf0_predict_raw, co_imf0_gru_evaluation, co_imf0_train_loss = GRU_predict(df_vmd_co_imf0) print('======Co-IMF0 Predicting Finished======\n', co_imf0_gru_evaluation) time1 = time.time() print('Running time: %.3fs'%(time1-time0)) co_imf0_predict_raw.plot(title='Co-IMF0 Predicting Result') co_imf0_train_loss.plot(title='Co-IMF0 Training Loss')# 8.Predict Co-IMF1 and Co-IMF2 by vector-input GRU co_imf1_predict_raw, co_imf1_gru_evaluation, co_imf1_train_loss = GRU_predict(df_integrate_result['co-imf1']) print('======Co-IMF1 Predicting Finished======\n', co_imf1_gru_evaluation) time2 = time.time() print('Running time: %.3fs'%(time2-time1)) co_imf1_predict_raw.plot(title='Co-IMF1 Predicting Result') co_imf1_train_loss.plot(title='Co-IMF1 Training Loss')co_imf2_predict_raw, co_imf2_gru_evaluation, co_imf2_train_loss = GRU_predict(df_integrate_result['co-imf2']) print('======Co-IMF2 Predicting Finished======\n', co_imf2_gru_evaluation) time3 = time.time() print('Running time: %.3fs'%(time3-time2)) co_imf2_predict_raw.plot(title='Co-IMF2 Predicting Result') co_imf2_train_loss.plot(title='Co-IMF2 Training Loss')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]金子皓,向玲,李林春,胡爱军.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(01):9-16.
[2]蒋富康,陆金桂,刘明昊,丰宇.基于CEEMDAN和CNN-LSTM的滚动轴承故障诊断[J].电子测量技术,2023,46(05):72-77.DOI:10.19651/j.cnki.emt.2210775.
🌈4 Python代码实现
相关文章:
【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
OpenText Exceed TurboX(ETX)—— 适用于 UNIX、Linux 和 Windows 的远程桌面解决方案
由于新技术的采用,以及商业全球化和全球协作的现实,几乎所有企业(无论其规模和所处行业)的员工的工作方式、时间和地点都发生了重大变化。业务领导者正在推动其 IT 部门提出解决方案,以帮助其远程员工提高工作效率&…...
【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降
【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降 逻辑回归分类Logistic Regression ClassificationLogistic Regression: Log OddsLogistic Regression: Decision BoundaryLikelihood under the Logistic ModelTraining the Logistic ModelGradient Desc…...
k8s pod “cpu和内存“ 资源限制
转载用于收藏学习:原文 文章目录 Pod资源限制requests:limits:docker run命令和 CPU 限制相关的所有选项如下: Pod资源限制 为了保证充分利用集群资源,且确保重要容器在运行周期内能够分配到足够的资源稳定运行&#x…...
datagrip 连接 phoenix
jar替换完后尽量重启datagrip. 然后重新连接即可. 不重启貌似报错... 效果:...
黑客入侵的常法
1.无论什么站,无论什么语言,我要渗透,第一件事就是扫目录,最好一下扫出个上传点,直接上传 shell ,诸位不要笑,有时候你花很久搞一个站,最后发现有个现成的上传点,而且很容…...
VB报警管理系统设计(源代码+系统)
可定时显示报警系统是一个能够定时并及时报警,提醒人们安全有效地按计划完成任务的系统。本论文从软件工程的角度,对可定时显示报警系统做了全面的需求分析,简要说明了该系统的构思、特点及开发环境;阐述了系统的主要功能,论述了它的设计与实现,并且叙述了系统的测试与评…...
Redis入门 - Redis Stream
原文首更地址,阅读效果更佳! Redis入门 - Redis Stream | CoderMast编程桅杆Redis入门 - Redis Stream Redis Stream 是 Redis 5.0 版本新增加的数据结构。 Redis Stream 主要用于消息队列(MQ,Message Queue)…...
微服务中常见问题
Spring Cloud 组件 Spring Cloud五大组件有哪些? Eureka:注册中心 Ribbon:负载均衡 Feign:远程调用 Hystrix:服务熔断 Zuul/Gateway:服务网关 随着SpringCloud Alibaba在国内兴起,我们项目中…...
更新删除清理购物车
目录 1 更新购物车 2 取会员门店购物车项 3 取会员门店购物车项(无缓存) 4 删除门店购物车某项 5 删除门店购物车多项 6 清理门店购物车 7 清理门店购物车 8 添加商品至购物车 9 添加商品至购物车...
基于Intel NUC平台的字符设备陀螺仪GX5-25驱动程序
陀螺仪GX5-25连接到Intel NUC上可能需要进行一些设备树的修改和编写驱动程序的工作。这是因为陀螺仪GX5-25可能需要特定的设备树配置和驱动程序来与Intel NUC的硬件和操作系统进行通信。 如果陀螺仪GX5-25没有官方的Linux驱动程序或文档,您可能需要自己编写驱动程序…...
建立小型医学数据库(总结)
建立小型医学数据库 小型医学数据库可以用于存储和管理医学数据,如患者病历、药品信息、试验结果等。这对于医疗机构和科研机构来说非常必要,可以提高数据管理和共享的效率,进而促进医学研究和诊疗水平的提升。 建立小型医学数据库有以下基本…...
Git学习笔记
文章目录 一. 引入1. SCM软件2. 概念 二. GitHubDesktop三. Git1. 版本号 (底层原理)1.1 视频笔记1.2 实操记录 2. Git命令2.0 汇总2.1 仓库操作2.2 文件操作2.3 分支操作2.4 标签操作2.5 远程仓库 四. idea操作 一. 引入 1. SCM软件 2. 概念 集中式版本控制 文件冲突 可以上…...
vue面试题1. 请说下封装 vue 组件的过程?2. Vue组件如何进行传值的?3. Vue 组件 data 为什么必须是函数?4. 讲一下组件的命名规范
1. 请说下封装 vue 组件的过程? 首先,组件可以提升整个项目的开发效率。能够把页面抽象成多个相对独立的模块,解决了我们传统项目开发:效率低、难维护、复用性等问题。 分析需求:确定业务需求,把页面中可以…...
Docker使用记录
文章目录 Docker基本使用Docker配置查看状态卸载安装使用 apt 存储库安装在 Ubuntu 上安装 Docker 桌面(非必要) Docker实例使用现有的镜像查找镜像拖取镜像列出镜像列表更新镜像导出镜像删除镜像导入镜像清理镜像查看容器导出容器导入容器-以镜像的方式创建容器重启容器进入容…...
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
1. 形态学2. 常用接口2.1 cvtColor()2.2 图像二值化threshod()自适应阈值二值化adaptiveThreshod() 2.3 腐蚀与膨胀erode()getStructuringElement()dilate() 2.4开、闭、梯度、顶帽、黑帽运算morphologyEx() 1. 形态学 OpenCV形态学是一种基于OpenCV库的数字图像处理技术&…...
chatgpt赋能python:Python支持跨平台软件开发
Python支持跨平台软件开发 作为一种高级编程语言,Python 以其丰富的库和跨平台支持而备受开发人员欢迎。Python 通过将应用程序的可移植性最大化,使得开发人员可以轻松地在不同的操作系统平台上构建和部署软件。 跨平台支持 Python 支持各种不同的操作…...
哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集
哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集 文章目录 哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集CIDR与路由聚集CIDR路由聚集 CIDR与路由聚集 CIDR CIDR:无类域间路由(CIDR:Classless InterDo…...
C++ 教程(19)——日期 时间
C 日期 & 时间 C 标准库没有提供所谓的日期类型。C 继承了 C 语言用于日期和时间操作的结构和函数。为了使用日期和时间相关的函数和结构,需要在 C 程序中引用 <ctime> 头文件。 有四个与时间相关的类型:clock_t、time_t、size_t 和 tm。类型…...
React 应用 Effect Hook 函数式中操作生命周期
React Hook入门小案例 在函数式组件中使用state响应式数据给大家演示了最简单的 Hook操作 那么 我们继续 首先 Hook官方介绍 他没有破坏性是完全可选的 百分比兼容 也就说 我们一起的 类 class的方式也完全可以用 只要 react 16,8以上就可以使用 Hook本身不会影响你的react的理…...
C代码程序实现扫雷游戏纯代码版本
//test.c文件 #define _CRT_SECURE_NO_WARNINGS 1#include "game.h"void menu() {printf("***********************\n");printf("***** 1. play *****\n");printf("***** 0. exit *****\n");printf("*******************…...
ai代写---怎么在ubutnu服务器中安装mqtt
在Ubuntu服务器中安装MQTT Broker可以使用Mosquitto,它是一个开源的MQTT Broker实现,支持Linux、Windows和MacOS等多个平台。 以下是在Ubuntu服务器中安装Mosquitto的步骤: 更新apt-get包列表 打开终端,执行以下命令更新apt-get…...
【设计模式与范式:行为型】63 | 职责链模式(下):框架中常用的过滤器、拦截器是如何实现的?
上一节课,我们学习职责链模式的原理与实现,并且通过一个敏感词过滤框架的例子,展示了职责链模式的设计意图。本质上来说,它跟大部分设计模式一样,都是为了解耦代码,应对代码的复杂性,让代码满足…...
Kendo UI for jQuery---03.组件___网格---02.开始
网格入门 本指南演示了如何启动和运行 Kendo UI for jQuery Grid。 完成本指南后,您将能够实现以下最终结果: 1. 创建一个空的 div 元素 首先,在页面上创建一个空元素,该元素将用作 Grid 组件的主容器。 <div id"my-…...
初识Telegraf、InfluxDB和Grafana铁三角形成的监控可视化解决方案
文章目录 前言原始的监控靠人盯进化的监控靠批处理脚本高端的监控靠完整的可视化解决方案Telegraf、InfluxDB和Grafana铁三角TelegrafInfluxDBGrafana Grafana仪表板展示服务器资源总览负载和内存使用网络带宽磁盘IOIO延迟其他指标进程信息 总结 前言 数据监控目前用于各行各业…...
【哈佛积极心理学笔记】第20课 幸福与幽默
第20课 幸福与幽默 The vanguard of the positive psychology revolution: Our brain is basically a single processor, capable of consciouly choosing to devote resources either to the pain and suffering on one side, or viewing the world that lens of something l…...
设计模式-责任链模式
责任链模式 请求发送者和接收者连接成一条链,一个对象处理完,交给下一位,沿着链传递请求,这就是责任链模式。 角色 抽象处理者(Handler) 定义了处理请求的方法具体处理者(ContreteHandler&am…...
不变的是需求,变化的是解决方法和工具:探讨iPaaS与ESB的差异
在企业数字化转型过程中,企业需要面临日益复杂的业务和数据集成挑战。为了应对这些挑战,需要借助适当的解决方法和工具来实现系统间的通信和数据传输。在这方面,iPaaS(Integration Platform as a Service)和ESB&#x…...
网络解析----faster rcnn
Faster R-CNN(Region-based Convolutional Neural Network)是一种基于区域的卷积神经网络用于目标检测任务的模型。它是一种两阶段的目标检测方法,主要包含以下几个步骤: Region Proposal Network(RPN): F…...
modbus TCP协议讲解及实操
具体讲解 前言正文modbus tcp主机请求数据基本讲解Modbus Poll工具简单使用讲解 modbus tcp从机响应数据Modbus Slave工具简单使用讲解 前言 关于modbus tcp从0到1的讲解,案例结合讲解,详细了解整个modbus的可以参考这个:详解Modbus通信协议…...
windowxp做网站服务器/营销计划
一、前言 1、简介 在上一篇UART详解中,已经有了关于UART的详细介绍了,也有关于如何使用STM32CubeMX来配置UART的操作了,而在该篇博客,主要会讲解一下如何实现UART串口的发送功能。 2、UART简介 嵌入式开发中,UART串口通…...
完善网站的建设工作流程/比较成功的网络营销案例
我前几天随手画了一张图:在2000年初,我和朋友就在聊:手机肯定会变成计算机的。不过智能手机时代真的来了,我们也没干啥。(1)PC单机:中国1990-1995从1977年Apple发明个人电脑开始,单机…...
wordpress首页非常慢/互联网推广软件
本文从产品和架构演进、性能及稳定性挑战与优化实践、超级APP运维体系、架构上的容灾规划四个方面分享了支付宝APP亿级用户的性能稳定性优化及运维实践。性能方面,主要介绍了性能、电量、流量、内存、存储五个方面的优化。稳定性方面,主要介绍了Crash优化…...
企业网站托管方案内容/推广普通话宣传海报
题目:原题链接(中等) 标签:数组、双指针 解法时间复杂度空间复杂度执行用时Ans 1 (Python)O(N)O(N)O(N)O(1)O(1)O(1)84ms (43.47%)Ans 2 (Python)Ans 3 (Python) 解法一: class Solution:def maxArea(self, heights…...
网站生成app客户端/创建网页步骤
微软关于Kubernetes服务有哪些最新进展?我们直入主题! Azure Kubernetes Service (AKS) 自定义策略支持 - 现已公开预览 通过全新功能,您可以创建自定义策略定义和约束模板,并将其分配给启用了以下新功能的 AKS 集群:…...
齐齐哈尔哪里做网站/环球军事网最新军事新闻最新消息
在功能机时代以及智能机时代发展初期,诺基亚可算是手机市场中的巨头企业了。当时的诺基亚品牌热度非常高,其产品销量也非常可观,几乎走在大街小巷,都能看到诺基亚手机的身影。用过诺基亚手机的用户都知道,其所采用的塞…...