当前位置: 首页 > news >正文

【LeetCode 算法】Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数-Greedy

文章目录

  • Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数

Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数

问题描述:

给你一个正整数数组 nums 。每一次操作中,你可以从 nums 中选择 任意 一个数并将它减小恰好 一半。(注意,在后续操作中你可以对减半过的数继续执行操作)

请你返回将 nums 数组和 至少 减少一半最少 操作数。

1 < = n u m s . l e n g t h < = 1 0 5 1 < = n u m s [ i ] < = 1 0 7 1 <= nums.length <= 10^5\\ 1 <= nums[i] <= 10^7 1<=nums.length<=1051<=nums[i]<=107

分析

目标是将数组的和减少到原始数组和的一半,而且是最小的操作数。

一次操作可以选任意的元素减半,而且可以重复选择某个下标的元素。所以几乎不存在限制

也就是说一定在经过若干次操作后,可以达到目标

记原始数组和为 s u m sum sum,那么目标就是 h a l f = s u m / 2 half = sum/2 half=sum/2;
但是问题是要求最少的,所以细化一下目标,

  • 如果最后一次的操作使得最新的数组和 s ′ = = h a l f s'==half s==half,说明这是最后一次操作,
  • 同样如果 s ′ < h a l f s'<half s<half,也是说明最后一次操作。
  • 如果 s ′ > h a l f s'>half s>half,说明还需要进行操作。

而且为了使得能够尽快使 s ′ s' s靠近到目标 h a l f half half,每次一定是选择当前数组中 m a x max max,进行操作。

暴力

如果是暴力的算法,就是每次选择最大,然后减半,放回去,再找一次最大,循环往复。

每次找数组的最大值时间复杂度 O ( N ) O(N) O(N),而且要达到目标需要操作N次,整体的时间复杂度为 O ( N 2 ) O(N^2) O(N2).

所以这个暴力的时间复杂度有TLE的风险。

优先队列

所以就需要进行加速,而唯一能选的就是优先队列
在优先队列中的维护一个最大值或最小值的平均时间复杂度是 O ( l o g N ) O(logN) O(logN),所以整体的时间复杂度就会降低到 O ( N l o g N ) O(NlogN) O(NlogN).

同时需要注意的是数据的范围,以及精度

代码

TLE

public int halveArray(int[] nums) {Double tot = 0.0;int n = nums.length;Double[] arr = new Double[n];for(int i =0;i<n;i++){arr[i] = nums[i]*1.0;tot+= arr[i];}Double half = tot*0.5;int ans =0;for(int i =0;i<n;i++){if(half<=0) break;int id =0;double max = arr[id];for(int j =0;j<n;j++){if(arr[j]>max){max = arr[j];id = j;}}arr[id] *= 0.5;half -= arr[id];ans++;}return ans;}

时间复杂度 O ( N 2 ) O(N^2) O(N2)

空间复杂度 O ( 1 ) O(1) O(1)

优先队列

public int halveArray(int[] nums) {PriorityQueue<Double> pq = new PriorityQueue<Double>((a,b)->{return b.compareTo(a);});Double tot = 0.0;for(int num: nums){Double t = num*1.0;tot+=t;pq.offer(t);}          Double half = tot*0.5;int ans =0;while(half>0&&!pq.isEmpty()){Double t = pq.poll();t *=0.5;half -= t;ans++;pq.offer(t);}return ans;}

时间复杂度 O ( N l o g N ) O(NlogN) O(NlogN)

空间复杂度 O ( N ) O(N) O(N)

Tag

Array

Greedy

Heap

相关文章:

【LeetCode 算法】Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数-Greedy

文章目录 Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数问题描述&#xff1a;分析代码TLE优先队列 Tag Minimum Operations to Halve Array Sum 将数组和减半的最少操作次数 问题描述&#xff1a; 给你一个正整数数组 nums 。每一次操作中&#xff0c;你…...

Doc as Code (3):业内人士的观点

作者 | Anne-Sophie Lardet 在技术传播国际会议十周年之际&#xff0c;Fluid Topics 的认证技术传播者和功能顾问 Gaspard上台探讨了“docOps 作为实现Doc as Code的中间结构”的概念。在他的演讲中&#xff0c;观众提出了几个问题&#xff0c;我们想分享Gaspard的见解&#x…...

【Kafka】消息队列Kafka基础

目录 消息队列简介消息队列的应用场景异步处理系统解耦流量削峰日志处理 消息队列的两种模式点对点模式发布订阅模式 Kafka简介及应用场景Kafka比较其他MQ的优势Kafka目录结构搭建Kafka集群编写Kafka一键启动/关闭脚本 Kafka基础操作创建topic生产消息到Kafka从Kafka消费消息使…...

Java的第十五篇文章——网络编程(后期再学一遍)

目录 学习目的 1. 对象的序列化 1.1 ObjectOutputStream 对象的序列化 1.2 ObjectInputStream 对象的反序列化 2. 软件结构 2.1 网络通信协议 2.1.1 TCP/IP协议参考模型 2.1.2 TCP与UDP协议 2.2 网络编程三要素 2.3 端口号 3. InetAddress类 4. Socket 5. TCP网络…...

【深度学习】High-Resolution Image Synthesis with Latent Diffusion Models,论文

13 Apr 2022 论文&#xff1a;https://arxiv.org/abs/2112.10752 代码&#xff1a;https://github.com/CompVis/latent-diffusion 文章目录 PS基本概念运作原理 AbstractIntroductionRelated WorkMethodPerceptual Image CompressionLatent Diffusion Models Conditioning Mec…...

前端学习——Vue (Day6)

路由进阶 路由的封装抽离 //main.jsimport Vue from vue import App from ./App.vue import router from ./router/index// 路由的使用步骤 5 2 // 5个基础步骤 // 1. 下载 v3.6.5 // 2. 引入 // 3. 安装注册 Vue.use(Vue插件) // 4. 创建路由对象 // 5. 注入到new Vue中&…...

STM32MP157驱动开发——按键驱动(tasklet)

文章目录 “tasklet”机制&#xff1a;内核函数定义 tasklet使能/ 禁止 tasklet调度 tasklet删除 tasklet tasklet软中断方式的按键驱动程序(stm32mp157)tasklet使用方法&#xff1a;button_test.cgpio_key_drv.cMakefile修改设备树文件编译测试 “tasklet”机制&#xff1a; …...

PostgreSQL构建时间

– PostgreSQL构建时间 select make_timestamp(2023,7,27,7,34,16);...

2023-将jar包上传至阿里云maven私有仓库(云效制品仓库)

一、背景介绍 如果要将平时积累的代码工具jar包&#xff0c;上传至云端&#xff0c;方便团队大家一起使用&#xff0c;一般的方式就是上传到Maven中心仓库&#xff08;但是这种方式步骤多&#xff0c;麻烦&#xff0c;而且上传之后审核时间比较长&#xff0c;还不太容易通过&a…...

嵌入式linux之OLED显示屏SPI驱动实现(SH1106,ssd1306)

周日业余时间太无聊&#xff0c;又不喜欢玩游戏&#xff0c;大家的兴趣爱好都是啥&#xff1f;我觉得敲代码也是一种兴趣爱好。正巧手边有一块儿0.96寸的OLED显示屏&#xff0c;一直在吃灰&#xff0c;何不把玩一把&#xff1f;于是说干就干&#xff0c;最后在我的imax6ul的lin…...

关于element ui 安装失败的问题解决方法、查看是否安装成功及如何引入

Vue2引入 执行npm i element-ui -S报错 原因&#xff1a;npm版本太高 报错信息&#xff1a; 解决办法&#xff1a; 使用命令&#xff1a; npm install --legacy-peer-deps element-ui --save 引入&#xff1a; 在main.js文件中引入 //引入Vue import Vue from vue; //引入…...

Selenium多浏览器处理

Python 版本 #导入依赖 import os from selenium import webdriverdef test_browser():#使用os模块的getenv方法来获取声明环境变量browserbrowser os.getenv("browser").lower()#判断browser的值if browser "headless":driver webdriver.PhantomJS()e…...

浅谈 AI 大模型的崛起与未来展望:马斯克的 xAI 与中国产业发展

文章目录 &#x1f4ac;话题&#x1f4cb;前言&#x1f3af;AI 大模型的崛起&#x1f3af;中国 AI 产业的进展与挑战&#x1f3af;AI 大模型的未来展望&#x1f9e9;补充 &#x1f4dd;最后 &#x1f4ac;话题 北京时间 7 月 13 日凌晨&#xff0c;马斯克在 Twiiter 上宣布&am…...

【CesiumJS材质】(1)圆扩散

效果示例 最佳实践&#xff1a; 其他效果&#xff1a; 要素说明&#xff1a; 代码 /** Date: 2023-07-21 15:15:32* LastEditors: ReBeX 420659880qq.com* LastEditTime: 2023-07-27 11:13:17* FilePath: \cesium-tyro-blog\src\utils\Material\EllipsoidFadeMaterialP…...

实战-单例模式和创建生产者相结合

实际中遇到了这样一个问题&#xff1a; The producer group[xxxx] has been created before, specify another instanceName (like producer.setInstanceName) please. 发生的原因是&#xff1a;一个进程内&#xff0c;创建了多个相同topic的producer。 所以问题就转换成了如何…...

[SQL挖掘机] - 窗口函数介绍

介绍: 窗口函数也称为 OLAP 函数。OLAP 是 OnLine AnalyticalProcessing 的简称&#xff0c;意思是对数据库数据进行实时分析处理。窗口函数是一种用于执行聚合计算和排序操作的功能强大的sql函数。它们可以在查询结果集中创建一个窗口&#xff08;window&#xff09;&#xf…...

原生js实现锚点滚动顶部

简介 使用原生js API实现滚动到指定容器的顶部&#xff0c;API是scrollIntoView 使用 let eldocment.querySelector() 获取dom元素el.scrollIntoView()该元素滚动到其父元素的顶部 高级用法 scrollIntoView(Options)//option可以配置如下 options{behavior&#xff1a;smoot…...

使用mysql接口遇到点问题

game_server加入了dbstorage的代码。dbstorage实现了与mysql的交互&#xff1a;driver_mysql。其中调用了mysql相关的接口。所以game_server需要链接libmysql.lib。 从官网下载了mysql的源码&#xff1a;在用cmake构建mysql工程的时候&#xff0c;遇到了一些问题。 msyql8.0需…...

excel绘制折线图或者散点图

一、背景 假如现在通过代码处理了一批数据&#xff0c;想看数据的波动情况&#xff0c;是不是还需要写个pyhon代码&#xff0c;读取文件&#xff0c;绘制曲线&#xff0c;看起来也简单&#xff0c;但是还有更简单的方法&#xff0c;就是直接生成csv文件&#xff0c;csv文件就是…...

ChatGPT长文本对话输入方法

ChatGPT PROMPTs Splitter 是一个开源工具&#xff0c;旨在帮助你将大量上下文数据分成更小的块发送到 ChatGPT 的提示&#xff0c;并根据如何处理所有块接收到 ChatGPT&#xff08;或其他具有字符限制的语言模型&#xff09;的方法。 推荐&#xff1a;用 NSDT设计器 快速搭建可…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

计算机系统结构复习-名词解释2

1.定向&#xff1a;在某条指令产生计算结果之前&#xff0c;其他指令并不真正立即需要该计算结果&#xff0c;如果能够将该计算结果从其产生的地方直接送到其他指令中需要它的地方&#xff0c;那么就可以避免停顿。 2.多级存储层次&#xff1a;由若干个采用不同实现技术的存储…...