当前位置: 首页 > news >正文

Python学习笔记_基础篇(十一)_socket编程

python 线程与进程简介

进程与线程的历史

我们都知道计算机是由硬件和软件组成的。硬件中的CPU是计算机的核心,它承担计算机的所有任务。 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配、任务的调度。 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等。 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构——进程控制块。 进程就是一个程序在一个数据集上的一次动态执行过程。 进程一般由程序、数据集、进程控制块三部分组成。我们编写的程序用来描述进程要完成哪些功能以及如何完成;数据集则是程序在执行过程中所需要使用的资源;进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志。

在早期的操作系统里,计算机只有一个核心,进程执行程序的最小单位,任务调度采用时间片轮转的抢占式方式进行进程调度。每个进程都有各自的一块独立的内存,保证进程彼此间的内存地址空间的隔离。 随着计算机技术的发展,进程出现了很多弊端,一是进程的创建、撤销和切换的开销比较大,二是由于对称多处理机(对称多处理机(SymmetricalMulti-Processing)又叫SMP,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构)的出现,可以满足多个运行单位,而多进程并行开销过大。 这个时候就引入了线程的概念。 线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合 和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能。 线程没有自己的系统资源,只拥有在运行时必不可少的资源。但线程可以与同属与同一进程的其他线程共享进程所拥有的其他资源。

进程与线程之间的关系

线程是属于进程的,线程运行在进程空间内,同一进程所产生的线程共享同一内存空间,当进程退出时该进程所产生的线程都会被强制退出并清除。线程可与属于同一进程的其它线程共享进程所拥有的全部资源,但是其本身基本上不拥有系统资源,只拥有一点在运行中必不可少的信息(如程序计数器、一组寄存器和栈)。

python 线程

Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

1、threading模块

threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。

import threading
import timedef worker(num):"""thread worker function:return:"""time.sleep(1)print("The num is  %d" % num)returnfor i in range(20):t = threading.Thread(target=worker,args=(i,),name=“t.%d” % i)t.start()

上述代码创建了20个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

Thread方法说明

t.start() : 激活线程,

t.getName() : 获取线程的名称

t.setName() : 设置线程的名称

t.name : 获取或设置线程的名称

t.is_alive() : 判断线程是否为激活状态

t.isAlive() :判断线程是否为激活状态

t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

t.isDaemon() : 判断是否为守护线程

t.ident :获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。

t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义

t.run() :线程被cpu调度后自动执行线程对象的run方法

2、线程锁threading.RLock和threading.Lock

由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。为了保证数据的准确性,引入了锁的概念。所以,可能出现如下问题:

例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。

import threading
import timeglobals_num = 0lock = threading.RLock()def Func():lock.acquire()  # 获得锁 global globals_numglobals_num += 1time.sleep(1)print(globals_num)lock.release()  # 释放锁 for i in range(10):t = threading.Thread(target=Func)t.start()

3、threading.RLock和threading.Lock 的区别

RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。

import threading
lock = threading.Lock()    #Lock对象
lock.acquire()
lock.acquire()  #产生了死琐。
lock.release()
lock.release() import threading
rLock = threading.RLock()  #RLock对象
rLock.acquire()
rLock.acquire()    #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()

4、threading.Event

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

  • clear:将“Flag”设置为False

  • set:将“Flag”设置为True

  • Event.isSet() :判断标识位是否为Ture。

    import threading

    def do(event):
    print(‘start’)
    event.wait()
    print(‘execute’)

    event_obj = threading.Event()
    for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()

    event_obj.clear()
    inp = input(‘input:’)
    if inp == ‘true’:
    event_obj.set()

当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。

5、threading.Condition

一个condition变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,当几个condition变量必须共享和同一个锁的时候,是很有用的。锁是conditon对象的一部分:没有必要分别跟踪。

condition变量服从上下文管理协议:with语句块封闭之前可以获取与锁的联系。 acquire() 和 release() 会调用与锁相关联的相应的方法。

其他和锁关联的方法必须被调用,wait()方法会释放锁,当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,

Condition类实现了一个conditon变量。 这个conditiaon变量允许一个或多个线程等待,直到他们被另一个线程通知。 如果lock参数,被给定一个非空的值,,那么他必须是一个lock或者Rlock对象,它用来做底层锁。否则,会创建一个新的Rlock对象,用来做底层锁。

  • wait(timeout=None) : 等待通知,或者等到设定的超时时间。当调用这wait()方法时,如果调用它的线程没有得到锁,那么会抛出一个RuntimeError 异常。 wati()释放锁以后,在被调用相同条件的另一个进程用notify() or notify_all() 叫醒之前 会一直阻塞。wait() 还可以指定一个超时时间。

如果有等待的线程,notify()方法会唤醒一个在等待conditon变量的线程。notify_all() 则会唤醒所有在等待conditon变量的线程。

注意: notify()和notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的wait() 调用。除非线程调用notify()和notify_all()之后放弃了锁的所有权。

在典型的设计风格里,利用condition变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用wait()。修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。 例子: 生产者-消费者模型,

import threading
import time
def consumer(cond):with cond:print("consumer before wait")cond.wait()print("consumer after wait")def producer(cond):with cond:print("producer before notifyAll")cond.notifyAll()print("producer after notifyAll")condition = threading.Condition()
c1 = threading.Thread(name="c1", target=consumer, args=(condition,))
c2 = threading.Thread(name="c2", target=consumer, args=(condition,))p = threading.Thread(name="p", target=producer, args=(condition,))c1.start()
time.sleep(2)
c2.start()
time.sleep(2)
p.start()

6、queue模块

Queue 就是对队列,它是线程安全的

举例来说,我们去麦当劳吃饭。饭店里面有厨师职位,前台负责把厨房做好的饭卖给顾客,顾客则去前台领取做好的饭。这里的前台就相当于我们的队列。形成管道样,厨师做好饭通过前台传送给顾客,所谓单向队列

这个模型也叫生产者-消费者模型。

import queueq = queue.Queue(maxsize=0)  # 构造一个先进显出队列,maxsize指定队列长度,为0 时,表示队列长度无限制。q.join()    # 等到队列为kong的时候,在执行别的操作
q.qsize()   # 返回队列的大小 (不可靠)
q.empty()   # 当队列为空的时候,返回True 否则返回False (不可靠)
q.full()    # 当队列满的时候,返回True,否则返回False (不可靠)
q.put(item, block=True, timeout=None) #  将item放入Queue尾部,item必须存在,可以参数block默认为True,表示当队列满时,会等待队列给出可用位置,为False时为非阻塞,此时如果队列已满,会引发queue.Full 异常。 可选参数timeout,表示 会阻塞设置的时间,过后,如果队列无法给出放入item的位置,则引发 queue.Full 异常
q.get(block=True, timeout=None) #   移除并返回队列头部的一个值,可选参数block默认为True,表示获取值的时候,如果队列为空,则阻塞,为False时,不阻塞,若此时队列为空,则引发 queue.Empty异常。 可选参数timeout,表示会阻塞设置的时候,过后,如果队列为空,则引发Empty异常。
q.put_nowait(item) #   等效于 put(item,block=False)
q.get_nowait() #    等效于 get(item,block=False)

代码如下:

#!/usr/bin/env python
import Queue
import threadingmessage = Queue.Queue(10)def producer(i):while True:message.put(i)def consumer(i):while True:msg = message.get()for i in range(12):t = threading.Thread(target=producer, args=(i,))t.start()for i in range(10):t = threading.Thread(target=consumer, args=(i,))t.start()

那就自己做个线程池吧:

# 简单往队列中传输线程数
import threading
import time
import queueclass Threadingpool():def __init__(self,max_num = 10):self.queue = queue.Queue(max_num)for i in range(max_num):self.queue.put(threading.Thread)def getthreading(self):return self.queue.get()def addthreading(self):self.queue.put(threading.Thread)def func(p,i):time.sleep(1)print(i)p.addthreading()if __name__ == "__main__":p = Threadingpool()for i in range(20):thread = p.getthreading()t = thread(target = func, args = (p,i))t.start()

方法一

#往队列中无限添加任务
import queue
import threading
import contextlib
import timeStopEvent = object()class ThreadPool(object):def __init__(self, max_num):self.q = queue.Queue()self.max_num = max_numself.terminal = Falseself.generate_list = []self.free_list = []def run(self, func, args, callback=None):"""线程池执行一个任务:param func: 任务函数:param args: 任务函数所需参数:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数):return: 如果线程池已经终止,则返回True否则None"""if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:self.generate_thread()w = (func, args, callback,)self.q.put(w)def generate_thread(self):"""创建一个线程"""t = threading.Thread(target=self.call)t.start()def call(self):"""循环去获取任务函数并执行任务函数"""current_thread = threading.currentThreadself.generate_list.append(current_thread)event = self.q.get()  # 获取线程while event != StopEvent:   # 判断获取的线程数不等于全局变量func, arguments, callback = event   # 拆分元祖,获得执行函数,参数,回调函数try:result = func(*arguments)   # 执行函数status = Trueexcept Exception as e:    # 函数执行失败status = Falseresult = eif callback is not None:try:callback(status, result)except Exception as e:pass# self.free_list.append(current_thread)# event = self.q.get()# self.free_list.remove(current_thread)with self.work_state():event = self.q.get()else:self.generate_list.remove(current_thread)def close(self):"""关闭线程,给传输全局非元祖的变量来进行关闭:return:"""for i in range(len(self.generate_list)):self.q.put(StopEvent)def terminate(self):"""突然关闭线程:return:"""self.terminal = Truewhile self.generate_list:self.q.put(StopEvent)self.q.empty()@contextlib.contextmanagerdef work_state(self):self.free_list.append(threading.currentThread)try:yieldfinally:self.free_list.remove(threading.currentThread)def work(i):print(i)return i +1 # 返回给回调函数def callback(ret):print(ret)pool = ThreadPool(10)
for item in range(50):pool.run(func=work, args=(item,),callback=callback)pool.terminate()
# pool.close()

方法二

python 进程

multiprocessing是python的多进程管理包,和threading.Thread类似。

1、 multiprocessing模块

直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU。在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法,

from multiprocessing import Processdef func(name):print('hello', name)if __name__ == "__main__":p = Process(target=func,args=('zhangyanlin',))p.start()p.join()  # 等待进程执行完毕

在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据, multiprocessing提供了两种方式。

(1)multiprocessing,Array,Value

数据可以用Value或Array存储在一个共享内存地图里,如下:

from multiprocessing import Array,Value,Processdef func(a,b):a.value = 3.333333333333333for i in range(len(b)):b[i] = -b[i]if __name__ == "__main__":num = Value('d',0.0)arr = Array('i',range(11))c = Process(target=func,args=(num,arr))d= Process(target=func,args=(num,arr))c.start()d.start()c.join()d.join()print(num.value)for i in arr:print(i)
输出:3.1415927[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

创建num和arr时,“d”和“i”参数由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。

Array(‘i’, range(10))中的‘i’参数:

‘c’: ctypes.c_char     ‘u’: ctypes.c_wchar    ‘b’: ctypes.c_byte     ‘B’: ctypes.c_ubyte
‘h’: ctypes.c_short     ‘H’: ctypes.c_ushort    ‘i’: ctypes.c_int      ‘I’: ctypes.c_uint
‘l’: ctypes.c_long,    ‘L’: ctypes.c_ulong    ‘f’: ctypes.c_float    ‘d’: ctypes.c_double

(2)multiprocessing,Manager

由Manager()返回的manager提供list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array类型的支持

 from multiprocessing import Process,Manager
def f(d,l):d["name"] = "zhangyanlin"d["age"] = 18d["Job"] = "pythoner"l.reverse()if __name__ == "__main__":with Manager() as man:d = man.dict()l = man.list(range(10))p = Process(target=f,args=(d,l))p.start()p.join()print(d)print(l)输出:{0.25: None, 1: '1', '2': 2}[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process manager比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。

2、进程池(Using a pool of workers)

Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

我们可以用Pool类创建一个进程池, 展开提交的任务给进程池。 例:

#apply
from  multiprocessing import Pool
import timedef f1(i):time.sleep(0.5)print(i)return i + 100if __name__ == "__main__":pool = Pool(5)for i in range(1,31):pool.apply(func=f1,args=(i,))#apply_async
def f1(i):time.sleep(0.5)print(i)return i + 100
def f2(arg):print(arg)if __name__ == "__main__":pool = Pool(5)for i in range(1,31):pool.apply_async(func=f1,args=(i,),callback=f2)pool.close()pool.join()

一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。

  • processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。
  • initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。
  • maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。
  • context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context

注意:Pool对象的方法只可以被创建pool的进程所调用。

New in version 3.2: maxtasksperchild

New in version 3.4: context

进程池的方法

  • apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。

  • apply_async(func[, args[, kwds[, callback[, error_callback]]]]) : apply()方法的一个变体,会返回一个结果对象。如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。

  • close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。

  • terminate() : 不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。

  • join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。

  • map(func, iterable[, chunksize])¶

  • map_async(func, iterable[, chunksize[, callback[, error_callback]]])¶

  • imap(func, iterable[, chunksize])¶

  • imap_unordered(func, iterable[, chunksize])

  • starmap(func, iterable[, chunksize])¶

  • starmap_async(func, iterable[, chunksize[, callback[, error_back]]])

python 协程

线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

event loop是协程执行的控制点, 如果你希望执行协程, 就需要用到它们。

event loop提供了如下的特性:

  • 注册、执行、取消延时调用(异步函数)
  • 创建用于通信的client和server协议(工具)
  • 创建和别的程序通信的子进程和协议(工具)
  • 把函数调用送入线程池中

协程示例:

 import asyncioasync def cor1():print("COR1 start")await cor2()print("COR1 end")async def cor2():print("COR2")loop = asyncio.get_event_loop()
loop.run_until_complete(cor1())
loop.close()

最后三行是重点。

  • asyncio.get_event_loop() : asyncio启动默认的event loop
  • run_until_complete() : 这个函数是阻塞执行的,知道所有的异步函数执行完成,
  • close() : 关闭event loop。

1、greenlet

 import greenletdef fun1():print("12")gr2.switch()print("56")gr2.switch()def fun2():print("34")gr1.switch()print("78")gr1 = greenlet.greenlet(fun1)
gr2 = greenlet.greenlet(fun2)
gr1.switch()

2、gevent

gevent属于第三方模块需要下载安装包

  • pip3 install --upgrade pip3

  • pip3 install gevent

    import gevent

    def fun1():
    print(“www.baidu.com”) # 第一步
    gevent.sleep(0)
    print(“end the baidu.com”) # 第三步

    def fun2():
    print(“www.zhihu.com”) # 第二步
    gevent.sleep(0)
    print(“end th zhihu.com”) # 第四步

    gevent.joinall([
    gevent.spawn(fun1),
    gevent.spawn(fun2),
    ])

遇到IO操作自动切换:

 import gevent
import requestsdef func(url):print("get: %s"%url)gevent.sleep(0)date =requests.get(url)ret = date.textprint(url,len(ret))gevent.joinall([gevent.spawn(func, 'https://www.python.org/'),gevent.spawn(func, 'https://www.yahoo.com/'),gevent.spawn(func, 'https://github.com/'),
])

工作中用到协程的地方

相关文章:

Python学习笔记_基础篇(十一)_socket编程

python 线程与进程简介 进程与线程的历史 我们都知道计算机是由硬件和软件组成的。硬件中的CPU是计算机的核心&#xff0c;它承担计算机的所有任务。 操作系统是运行在硬件之上的软件&#xff0c;是计算机的管理者&#xff0c;它负责资源的管理和分配、任务的调度。 程序是运行…...

C#8.0本质论第三章--更多数据类型

C#8.0本质论第三章–更多数据类型 3.1类型的划分 一个类型要么是值类型&#xff0c;要么是引用类型。区别在于拷贝方式&#xff1a;值类型数据总是拷贝值&#xff1b;引用类型的数据总是拷贝引用。 3.1.1值类型 3.1.2引用类型 引用类型的变量存储对数据存储位置的引用。 3.…...

浅拷贝与深拷贝

作者简介&#xff1a; zoro-1&#xff0c;目前大一&#xff0c;正在学习Java&#xff0c;数据结构等 作者主页&#xff1a; zoro-1的主页 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 浅拷贝与深拷贝 浅拷贝浅拷贝定义浅拷贝代码演示浅…...

背包 问题

1、背包问题 1.1、01背包 题目&#xff1a; 有n件物品和一个容量为m的背包&#xff0c;第i件物品的体积是v[ i ]&#xff0c;价值是w[ i ]&#xff0c;每件物品只有一件&#xff0c;求在不超过背包容量的前提下&#xff0c;可以放的物品的最大价值是多少 基本思路&#xff…...

蓝牙资讯|安卓将加强耳机音量监控,耳机查找功能将更加普遍

为了保护用户的听力健康&#xff0c;Android 14 将增加一项新功能&#xff0c;当用户使用耳机听音乐时&#xff0c;如果音量过高或持续时间过长&#xff0c;系统会发出警告&#xff0c;并自动降低音量。这个功能叫做“耳机音量过高警告&#xff08;headphone loud sound alert&…...

vue,element。监听快捷键粘贴图片,添加到el-upload的列表。

在①中&#xff0c;粘贴图片&#xff0c;图片能够自动添加到底下el-upload组件的文件列表②。 // 对应① <el-card><el-tooltip content"粘贴图片至此" placement"top"><input readonly class"pasteImg" paste.prevent"hand…...

时序预测 | MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN-BiLSTM卷积双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍…...

编织梦想:SpringBoot AOP 教程与自定义日志切面完整实战

什么是 AOP AOP 是指通过预编译方式和运行期动态代理的方式&#xff0c;在不修改源代码的情况下对程序进行功能增强的一种技术。AOP 不是面向对象编程&#xff08;OOP&#xff09;的替代品&#xff0c;而是 OOP 的补充和扩展。它是一个新的维度&#xff0c;用来表达横切问题&a…...

AssignableTypeFilter 和 AnnotationTypeFilter什么区别?

在 Spring 框架中&#xff0c;AssignableTypeFilter 和 AnnotationTypeFilter 都是用于在组件扫描过程中进行过滤的工具类&#xff0c;用于筛选出特定类型或特定注解的类。它们的主要区别在于筛选的侧重点和使用方式。 AssignableTypeFilter&#xff1a; AssignableTypeFilte…...

TCP-事件模型

#include "main.h"VOID Server_write_error() {}/*1.打开网络库 * 2.校验网络库版本 * 3.创建SOCKET * 4.绑定IP地址和端口 * 5.开始监听 * 6.创建客户端socket/接受链接 * 7.与客户端收发消息 * 8.(6.7)两步的函数accept&#xff0c;send,recv 有堵塞&#xff0c;可…...

typescript 声明文件

作用 1、为已存在js库提供类型信息&#xff0c;这样在ts项目中使用这些库时候&#xff0c;就像用ts一样&#xff0c;会有代码提示、类型保护等机制 2、项目内共享类型&#xff1a;如果多个.ts文件中都用到同一个类型&#xff0c;此时可以创建.d.ts文件提供该类型&#xff0c;…...

BC96 有序序列判断

描述 输入一个整数序列&#xff0c;判断是否是有序序列&#xff0c;有序&#xff0c;指序列中的整数从小到大排序或者从大到小排序(相同元素也视为有序)。 数据范围&#xff1a;3≤n≤50 序列中的值都满足1≤val≤100。 输入描述 第一行输入一个整数N(3≤N≤50)。 第二行…...

QT操作excel的两种方式 QT基础入门【Excel的操作】

QT操作excel的方式有两种&#xff1a;QAxObject 和QtXlsx QAxObject是通过调用office或者wps组件来实现对excel图表的操作的。只有装office软件或者wps软件就可以实现&#xff0c;但是 如果只装了office软件&#xff0c;有时可以用有时不可以用&#xff1b;如果只装wps软件&a…...

c++ qt--QString,弹出框(第二部分)

c qt–QString&#xff0c;弹出框&#xff08;第二部分&#xff09; 一.QString 1.所用头文件 #include<QString>2.功能 1.初始化 可以用字符&#xff0c;常量字符串、字符指针、字符数组等类型给QString进行初始化 QString str2"4567";//进行初始化2.拼…...

CSS自学框架之动画

这一节&#xff0c;自学CSS动画。主要学习了淡入淡出、淡入缩放、缩放、移动、旋转动画效果。先看一下成果。 优雅的过渡动画&#xff0c;为你的页面添加另一份趣味&#xff01; 在你的选择器里插入 animation 属性&#xff0c;并添加框架内置的 keyframes 即可实现&#xff0…...

RabbitMQ的5种消息队列

RabbitMQ的5种消息队列 1、七种模式介绍与应用场景 1.1 简单模式(Hello World) 一个生产者对应一个消费者&#xff0c;RabbitMQ 相当于一个消息代理&#xff0c;负责将 A 的消息转发给 B。 应用场景&#xff1a;将发送的电子邮件放到消息队列&#xff0c;然后邮件服务在队列…...

【C语言】选择排序

基本原理 先找到数组中最大的那个数&#xff0c;将最大的数放到数组最右端&#xff08;交换a[maxid]和a[len-1]这两个数的位置&#xff09;&#xff0c;然后继续从a[0]到a[len-2]中找到最大的数&#xff0c;然后交换a[maxid]和a[len-2]位置&#xff0c;依次查找交换&#xff0c…...

异步更新队列 - Vue2 响应式

前言 这篇文章分析了 Vue 更新过程中使用的异步更新队列的相关代码。通过对异步更新队列的研究和学习&#xff0c;加深对 Vue 更新机制的理解 什么是异步更新队列 先看看下面的例子&#xff1a; <div id"app"><div id"div" v-if"isShow&…...

【Unity的URP渲染管线下实现扩展后处理Volume组件_TemporalAntiAliasing(TAA)_抗锯齿(附带下载链接)】

【Unity的URP渲染管线下的TAA抗锯齿】 背景:1. Unity内置的抗锯齿只能够满足部分画面需求。展示一个锯齿示例。2. 在75寸大屏电视上跑通展示一个锯齿示例。- 在Camera上配置3. 安装了一个TAA组建,最后打包APK在安卓机上运行报错。- 经过测试排查,发现是没有将后处理的shader…...

NineData通过AWS FTR认证,打造安全可靠的数据管理平台

近日&#xff0c;NineData 作为新一代的云原生智能数据管理平台&#xff0c;成功通过了 AWS&#xff08;Amazon Web Service&#xff09;的 FTR 认证。NineData 在 FTR 认证过程中表现出色&#xff0c;成功通过了各项严格的测试和评估&#xff0c;在数据安全管理、技术应用、流…...

Qt应用开发(基础篇)——滚屏区域类 QScrollArea

一、前言 QScrollArea类继承于QAbstractScrollArea&#xff0c;QAbstractScrollArea继承于QFrame&#xff0c;是Qt滚动视图的常用部件。 滚屏区域基类 QAbstractScrollArea 框架类 QFrame QScrollArea类提供了对另一个小部件的滚动视图&#xff0c;基础功能、滚动条控制、界面策…...

安装最新版chromedriver 116,亲测可用

Version Selection...

html题库

什么是HTML? HTML的全称为 超文本标记语言 &#xff0c;是一种 标记语言 。 它包括一系列标签 &#xff0c;通过这些标签可以将网络上的文档格式统一&#xff0c;使分散的 Internet 资源连接为一个逻辑整体。 DOCTYPE 的作用是什么&#xff1f;标准模式与兼容模式&#xff08;…...

Android11 中 LED 使用-RK3568

文章目录 前言原理图设备树驱动前言 现在我们来学习点亮LED 原理图 然后对应在核心板原理图上查找 Working_LEDEN_H_GPIO0_B7,如下图所示: 那么我们只要控制 GPIO0_B7 即可控制 led 的亮灭。 设备树 leds: leds {compatible = "gpio-leds";work_led: work {gpi…...

BC77 有序序列插入一个数

描述 有一个有序数字序列&#xff0c;从小到大排序&#xff0c;将一个新输入的数插入到序列中&#xff0c;保证插入新数后&#xff0c;序列仍然是升序。 输入描述 第一行输入一个整数(0≤N≤50)。 第二行输入N个升序排列的整数&#xff0c;输入用空格分隔的N个整数。 第三…...

通过脚本使用Cppcheck做静态测试并生成报告(Windows)

1.安装cppcheck 先从cppcheck官方网站下载cppcheck的安装包。 注&#xff1a; &#xff08;1&#xff09;官网地址&#xff1a;https://sourceforge.net/projects/cppcheck &#xff08;2&#xff09;截止2023年8月&#xff0c;官方发布的最新版本是cppcheck-2.11-x64-Setup.…...

工业安全生产信息化平台的基本架构和关键功能分享

工业安全生产信息化平台是指利用信息技术手段&#xff0c;将工业安全生产管理与数据采集、传输、处理相结合&#xff0c;实现对工业安全生产全过程的数字化、信息化、智能化管理的平台。它通过集成多种信息系统和设备&#xff0c;实现对重大危险源监控预警、安全风险分级管控、…...

每日一道面试题之session 和 cookie 有什么区别?

Session和Cookie是两种在Web开发中用于跟踪用户状态的机制&#xff1a; 它们之间的区别如下&#xff1a; 存储位置&#xff1a;Cookie是存储在用户浏览器中的小型文本文件&#xff0c;而Session是存储在服务器上的数据结构。 数据安全性&#xff1a;Cookie中的数据可以被用户…...

SHELL 基础 显示字符颜色, 修改历史命令,Linux里的命令 执行顺序

echo 打印命令 &#xff1a; 显示字符串 &#xff1a; [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo "this is SHELL language" this is SH…...

Vue 和 JQuery 的区别在哪?为什么 JQuery 会被 Vue 取代?

在 Web 前端开发领域&#xff0c;我们经常会遇到一些不同的工具和框架&#xff0c;其中 Vue 和 JQuery, JQuery 是曾经备受欢迎的选择&#xff0c;而现在 Vue 是大多数人的选择。本文将探讨 Vue 和 JQuery 之间的区别&#xff0c;并讨论为什么越来越多的开发人员放弃 JQuery 而…...

Spring 中 Bean 注入与获取

Spring 中有哪些方式可以把 Bean 注入到 IOC 容器&#xff1f; 关于这个问题&#xff0c;我的回答入下&#xff1a;把 Bean 注入到 IOC 容器里面的方式有 7 种方式 1. 使用 xml 的方式来声明 Bean 的定义&#xff0c;Spring 容器在启动的时候会加载并解析这 个 xml&#xff0c;…...

STM32 中断复习

中断 打断CPU执行正常的程序&#xff0c;转而处理紧急程序&#xff0c;然后返回原暂停的程序继续运行&#xff0c;就叫中断。 在确定时间内对相应事件作出响应&#xff0c;如&#xff1a;温度监控&#xff08;定时器中断&#xff09;。故障处理&#xff0c;检测到故障&#x…...

Django的模型

定义模型 from django.db import models class User(models.Model):# 类属性是表示表的字段username models.CharField(max_length50,uniqueTrue)password models.CharField(max_length200)create_time models.DateTimeField(auto_now_addTrue) # auto_now_add新增数据时间…...

非计算机科班如何丝滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f; 方向一&#xff1a;如何规划才能实现转码&#xff1f; 对于非计算机科班的人来说&#xff0c;想要在计算机领域实现顺利的转码并不是一件容易的事情&#xff0c;但也并非不…...

PyTorch深度学习实战(12)——数据增强

PyTorch深度学习实战&#xff08;12&#xff09;——数据增强 0. 前言1. 图像增强1.1 仿射变换1.2 亮度修改1.3 添加噪音1.4 联合使用多个增强方法 2. 对批图像执行图像增强3. 利用数据增强训练模型小结系列链接 0. 前言 数据增强是指通过对原始数据进行一系列变换和处理&…...

SpringCloud Ribbon中的7种负载均衡策略

SpringCloud Ribbon中的7种负载均衡策略 Ribbon 介绍负载均衡设置7种负载均衡策略1.轮询策略2.权重策略3.随机策略4.最小连接数策略5.重试策略6.可用性敏感策略7.区域敏感策略 总结 负载均衡通器常有两种实现手段&#xff0c;一种是服务端负载均衡器&#xff0c;另一种是客户端…...

04 qt功能类、对话框类和文件操作

一 QT中时间和日期 时间 ---- QTime日期 ---- QDate对于Qt而言,在实际的开发过程中, 1)开发者可能知道所要使用的类 ---- >帮助手册 —>索引 -->直接输入类名进行查找 2)开发者可能不知道所要使用的类,只知道开发需求文档 ----> 帮助 手册,按下图操作: 1 …...

安装软件包

安装软件包 创建一个名为 /home/curtis/ansible/packages.yml 的 playbook : 将 php 和 mariadb 软件包安装到 dev、test 和 prod 主机组中的主机上 将 RPM Development Tools 软件包组安装到 dev 主机组中的主机上 将 dev 主机组中主机上的所有软件包更新为最新版本 vim packa…...

玩转单元测试之gmock

引言 前文我们学习了gtest相关的使用&#xff0c;单靠gtest&#xff0c;有些场景仍然无法进行测试&#xff0c;因此就诞生了gmock。 gmock快速入门 在引入gtest时&#xff0c;gmock也同样引入了&#xff0c;因此只需要在编译时加上合适的编译选项即可&#xff0c;注意不同版…...

POI与EasyExcel--写Excel

简单写入 03和07版的简单写入注意事项&#xff1a; 1. 对象不同&#xff1a;03对应HSSFWorkbook&#xff0c;07对应XSSFWorkbook 2. 文件后缀不同&#xff1a;03对应xls&#xff0c;07对应xlsx package com.zrf;import org.apache.poi.hssf.usermodel.HSSFWorkbook; import …...

7. CSS(四)

目录 一、浮动 &#xff08;一&#xff09;传统网页布局的三种方式 &#xff08;二&#xff09;标准流&#xff08;普通流/文档流&#xff09; &#xff08;三&#xff09;为什么需要浮动&#xff1f; &#xff08;四&#xff09;什么是浮动 &#xff08;五&#xff09;浮…...

uni-app 集成推送

研究了几天&#xff0c;终于是打通了uni-app的推送&#xff0c;本文主要针对的是App端的推送开发过程&#xff0c;分为在线推送和离线推送。我们使用uni-app官方推荐的uni-push2.0。官方文档 准备工作&#xff1a;开通uni-push功能 勾选uniPush2.0点击"配置"填写表单…...

Spring Boot+Redis 实现消息队列实践示例

Spring BootRedis 实现一个轻量级的消息队列 文章目录 Spring BootRedis 实现一个轻量级的消息队列0.前言1.基础介绍2.步骤2.1. 引入依赖2.2. 配置文件2.3. 核心源码 4.总结答疑 5.参考文档6. Redis从入门到精通系列文章 0.前言 本文将介绍如何利用Spring Boot与Redis结合实现…...

11. 实现业务功能--获取用户信息

目录 1. 实现 Controller 2. 单体测试 3. 修复返回值存在的缺陷 3.1 用户的隐私数据&#xff1a;密码的密文和盐不能显示 3.2 将值为 null 的字段可以进行过滤 3.3 时间的格式需要进行处理&#xff0c;如 yyyy-mmmm-ddd HH:mm:ss 3.4 data 属性没有返回 4. 实现前端页…...

HTTPS

HTTPS是什么 HTTPS 属于应用层协议&#xff0c;其原理是通过SSL/TLS协议在HTTP和TCP之间插入一层安全机制。通过SSL/TLS握手过程&#xff0c;客户端和服务器协商出一个对称密钥&#xff0c;用于后续的数据加密和解密&#xff0c;从而保证数据的机密性和完整性。 为什么会需要…...

spring详解

spring是于2003年兴起的一款轻量级的&#xff0c;非侵入式的IOC和AOP的一站式的java开发框架&#xff0c;为简化企业级应用开发而生。 轻量级的&#xff1a;指的是spring核心功能的jar包不大。 非侵入式的&#xff1a;业务代码不需要继承或实现spring中任何的类或接口 IOC&…...

香港服务器备案会通过吗?

​  对于企业或个人来说&#xff0c;合规备案是网络运营的基本要求&#xff0c;也是保护自身权益的重要举措。以下内容围绕备案展开话题&#xff0c;希望为您解开疑惑。 香港服务器备案会通过吗? 目前&#xff0c;香港服务器无法备案&#xff0c;这是由于国内管理规定的限制…...

乐鑫推出 ESP ZeroCode 控制台

乐鑫科技 ESP ZeroCode 控制台是一个网页应用&#xff0c;用户只需点击鼠标&#xff0c;描述想要创建的产品类型、功能及其硬件配置&#xff0c;即可按照自身需求&#xff0c;快速生成符合 Matter 认证的固件&#xff0c;并在硬件上进行试用。试用过程中&#xff0c;如有任何不…...

从NLP到聊天机器人

一、说明 今天&#xff0c;当打电话给银行或其他公司时&#xff0c;听到电话另一端的机器人向你打招呼是很常见的&#xff1a;“你好&#xff0c;我是你的数字助理。请问你的问题。是的&#xff0c;机器人现在不仅可以说人类语言&#xff0c;还可以用人类语言与用户互动。这是由…...

相关搜索引擎常用搜索语法(Google hacking语法和FOFA语法)

一&#xff1a;Google Hack语法 Google Hacking原指利用Google搜索引擎搜索信息来进行入侵的技术和行为&#xff0c;现指利用各种搜索引擎并使用一些高级的搜索语法来搜索信息。既利用搜索引擎强大的搜索功能&#xff0c;在在浩瀚的互联网中搜索到我们需要的信息。 &#xff0…...