当前位置: 首页 > news >正文

CUDA中的数学方法

CUDA中的数学方法

在这里插入图片描述

文章目录

  • CUDA中的数学方法
    • 1. Standard Functions
      • Single-Precision Floating-Point Functions
      • Double-Precision Floating-Point Functions
    • 2. Intrinsic Functions
      • Single-Precision Floating-Point Functions
      • Double-Precision Floating-Point Functions

参考手册列出了设备代码中支持的 C/C++ 标准库数学函数的所有函数及其描述,以及所有内部函数(仅在设备代码中支持)。

本附录在适用时提供了其中一些功能的准确性信息。它使用 ULP 进行量化。有关最后位置单元 (ULP: Unit in the Last Place, 上面是直译的,这里可以理解为最小精度单元) 定义的更多信息,请参阅 Jean-Michel Muller’s paper On the definition of ulp(x), RR-5504, LIP RR-2005-09, INRIA, LIP. 2005, pp.16 at https://hal.inria.fr/inria-00070503/document

设备代码中支持的数学函数不设置全局 errno 变量,也不报告任何浮点异常来指示错误;因此,如果需要错误诊断机制,用户应该对函数的输入和输出实施额外的筛选。用户负责指针参数的有效性。用户不得将未初始化的参数传递给数学函数,因为这可能导致未定义的行为:函数在用户程序中内联,因此受到编译器优化的影响。

1. Standard Functions

本节中的函数可用于主机和设备代码。

本节指定每个函数在设备上执行时的错误范围,以及在主机不提供函数的情况下在主机上执行时的错误范围。

错误界限是从广泛但并非详尽的测试中生成的,因此它们不是保证界限。

Single-Precision Floating-Point Functions

加法和乘法符合 IEEE 标准,因此最大误差为 0.5 ulp。

将单精度浮点操作数舍入为整数的推荐方法是 rintf(),而不是 roundf()。 原因是 roundf() 映射到设备上的 4 条指令序列,而 rintf() 映射到单个指令。 truncf()ceilf()floorf() 也都映射到一条指令。

Table 7. Single-Precision Mathematical Standard Library Functions with Maximum ULP Error. The maximum error is stated as the absolute value of the difference in ulps between a correctly rounded single-precision result and the result returned by the CUDA library function.
FunctionMaximum ulp error
x+y

0 (IEEE-754 round-to-nearest-even)

x*y

0 (IEEE-754 round-to-nearest-even)

x/y

0 for compute capability ≥ 2 when compiled with -prec-div=true

2 (full range), otherwise

1/x

0 for compute capability ≥ 2 when compiled with -prec-div=true

1 (full range), otherwise

rsqrtf(x)

1/sqrtf(x)

2 (full range)

Applies to 1/sqrtf(x) only when it is converted to rsqrtf(x) by the compiler.

sqrtf(x)

0 when compiled with -prec-sqrt=true

Otherwise 1 for compute capability ≥ 5.2

and 3 for older architectures

cbrtf(x) 1 (full range)
rcbrtf(x) 1 (full range)
hypotf(x,y) 3 (full range)
rhypotf(x,y) 2 (full range)
norm3df(x,y,z) 3 (full range)
rnorm3df(x,y,z) 2 (full range)
norm4df(x,y,z,t) 3 (full range)
rnorm4df(x,y,z,t) 2 (full range)
normf(dim,arr) An error bound can't be provided because a fast algorithm is used with accuracy loss due to round-off
rnormf(dim,arr) An error bound can't be provided because a fast algorithm is used with accuracy loss due to round-off
expf(x)2 (full range)
exp2f(x)2 (full range)
exp10f(x)2 (full range)
expm1f(x)1 (full range)
logf(x)1 (full range)
log2f(x)1 (full range)
log10f(x)2 (full range)
log1pf(x)1 (full range)
sinf(x)2 (full range)
cosf(x)2 (full range)
tanf(x)4 (full range)
sincosf(x,sptr,cptr)2 (full range)
sinpif(x)2 (full range)
cospif(x)2 (full range)
sincospif(x,sptr,cptr)2 (full range)
asinf(x)4 (full range)
acosf(x)3 (full range)
atanf(x)2 (full range)
atan2f(y,x)3 (full range)
sinhf(x)3 (full range)
coshf(x)2 (full range)
tanhf(x)2 (full range)
asinhf(x)3 (full range)
acoshf(x)4 (full range)
atanhf(x)3 (full range)
powf(x,y)9 (full range)
erff(x)2 (full range)
erfcf(x)4 (full range)
erfinvf(x)2 (full range)
erfcinvf(x)4 (full range)
erfcxf(x)4 (full range)
normcdff(x)5 (full range)
normcdfinvf(x)5 (full range)
lgammaf(x)6 (outside interval -10.001 ... -2.264; larger inside)
tgammaf(x)11 (full range)
fmaf(x,y,z)0 (full range)
frexpf(x,exp)0 (full range)
ldexpf(x,exp)0 (full range)
scalbnf(x,n)0 (full range)
scalblnf(x,l)0 (full range)
logbf(x)0 (full range)
ilogbf(x)0 (full range)
j0f(x)

9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

j1f(x)

9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

jnf(n,x) For n = 128, the maximum absolute error is 2.2 x 10-6
y0f(x)

9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

y1f(x)

9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

ynf(n,x)

ceil(2 + 2.5n) for |x| < n

otherwise, the maximum absolute error is 2.2 x 10-6

cyl_bessel_i0f(x)6 (full range)
cyl_bessel_i1f(x)6 (full range)
fmodf(x,y)0 (full range)
remainderf(x,y)0 (full range)
remquof(x,y,iptr)0 (full range)
modff(x,iptr)0 (full range)
fdimf(x,y)0 (full range)
truncf(x)0 (full range)
roundf(x)0 (full range)
rintf(x)0 (full range)
nearbyintf(x)0 (full range)
ceilf(x)0 (full range)
floorf(x)0 (full range)
lrintf(x)0 (full range)
lroundf(x)0 (full range)
llrintf(x)0 (full range)
llroundf(x)0 (full range)

Double-Precision Floating-Point Functions

将双精度浮点操作数舍入为整数的推荐方法是 rint(),而不是 round()。 原因是 round() 映射到设备上的 5 条指令序列,而 rint() 映射到单个指令。 trunc()、ceil() 和 floor() 也都映射到一条指令。

.
FunctionMaximum ulp error
x+y

0 (IEEE-754 round-to-nearest-even)

x*y

0 (IEEE-754 round-to-nearest-even)

x/y

0 (IEEE-754 round-to-nearest-even)

1/x

0 (IEEE-754 round-to-nearest-even)

sqrt(x) 0 (IEEE-754 round-to-nearest-even)
rsqrt(x)

1 (full range)

cbrt(x) 1 (full range)
rcbrt(x) 1 (full range)
hypot(x,y) 2 (full range)
rhypot(x,y) 1 (full range)
norm3d(x,y,z) 2 (full range)
rnorm3d(x,y,z) 1 (full range)
norm4d(x,y,z,t) 2 (full range)
rnorm4d(x,y,z,t) 1 (full range)
norm(dim,arr) An error bound can't be provided because a fast algorithm is used with accuracy loss due to round-off
rnorm(dim,arr) An error bound can't be provided because a fast algorithm is used with accuracy loss due to round-off
exp(x) 1 (full range)
exp2(x) 1 (full range)
exp10(x) 1 (full range)
expm1(x) 1 (full range)
log(x) 1 (full range)
log2(x) 1 (full range)
log10(x) 1 (full range)
log1p(x) 1 (full range)
sin(x) 2 (full range)
cos(x) 2 (full range)
tan(x) 2 (full range)
sincos(x,sptr,cptr) 2 (full range)
sinpi(x) 2 (full range)
cospi(x) 2 (full range)
sincospi(x,sptr,cptr) 2 (full range)
asin(x) 2 (full range)
acos(x) 2 (full range)
atan(x) 2 (full range)
atan2(y,x) 2 (full range)
sinh(x) 2 (full range)
cosh(x) 1 (full range)
tanh(x) 1 (full range)
asinh(x) 2 (full range)
acosh(x) 2 (full range)
atanh(x) 2 (full range)
pow(x,y) 2 (full range)
erf(x) 2 (full range)
erfc(x) 5 (full range)
erfinv(x) 5 (full range)
erfcinv(x) 6 (full range)
erfcx(x) 4 (full range)
normcdf(x) 5 (full range)
normcdfinv(x) 8 (full range)
lgamma(x) 4 (outside interval -11.0001 ... -2.2637; larger inside)
tgamma(x) 8 (full range)
fma(x,y,z) 0 (IEEE-754 round-to-nearest-even)
frexp(x,exp) 0 (full range)
ldexp(x,exp) 0 (full range)
scalbn(x,n) 0 (full range)
scalbln(x,l) 0 (full range)
logb(x) 0 (full range)
ilogb(x) 0 (full range)
j0(x)

7 for |x| < 8

otherwise, the maximum absolute error is 5 x 10-12

j1(x)

7 for |x| < 8

otherwise, the maximum absolute error is 5 x 10-12

jn(n,x) For n = 128, the maximum absolute error is 5 x 10-12
y0(x)

7 for |x| < 8

otherwise, the maximum absolute error is 5 x 10-12

y1(x)

7 for |x| < 8

otherwise, the maximum absolute error is 5 x 10-12

yn(n,x)

For |x| > 1.5n, the maximum absolute error is 5 x 10-12

cyl_bessel_i0(x) 6 (full range)
cyl_bessel_i1(x) 6 (full range)
fmod(x,y) 0 (full range)
remainder(x,y) 0 (full range)
remquo(x,y,iptr) 0 (full range)
modf(x,iptr) 0 (full range)
fdim(x,y) 0 (full range)
trunc(x) 0 (full range)
round(x) 0 (full range)
rint(x) 0 (full range)
nearbyint(x) 0 (full range)
ceil(x) 0 (full range)
floor(x) 0 (full range)
lrint(x) 0 (full range)
lround(x) 0 (full range)
llrint(x) 0 (full range)
llround(x) 0 (full range)

2. Intrinsic Functions

本节中的函数只能在设备代码中使用。

在这些函数中,有一些标准函数的精度较低但速度更快的版本。它们具有相同的名称,前缀为 __(例如 __sinf(x))。 它们更快,因为它们映射到更少的本机指令。 编译器有一个选项 (-use_fast_math),它强制下表 中的每个函数编译为其内在对应项。 除了降低受影响函数的准确性外,还可能导致特殊情况处理的一些差异。 一种更健壮的方法是通过调用内联函数来选择性地替换数学函数调用,仅在性能增益值得考虑的情况下以及可以容忍更改的属性(例如降低的准确性和不同的特殊情况处理)的情况下。

Table 9. Functions Affected by -use_fast_math
Operator/FunctionDevice Function
x/y

__fdividef(x,y)

sinf(x)

__sinf(x)

cosf(x)

__cosf(x)

tanf(x) __tanf(x)
sincosf(x,sptr,cptr)__sincosf(x,sptr,cptr)
logf(x)

__logf(x)

log2f(x)__log2f(x)
log10f(x)__log10f(x)
expf(x)__expf(x)
exp10f(x)__exp10f(x)
powf(x,y)__powf(x,y)

Single-Precision Floating-Point Functions

__fadd_[rn,rz,ru,rd]()__fmul_[rn,rz,ru,rd]() 映射到编译器从不合并到 FMAD 中的加法和乘法运算。相比之下,由“*”和“+”运算符生成的加法和乘法将经常组合到 FMAD 中。

_rn 为后缀的函数使用舍入到最接近的偶数舍入模式运行。

_rz 为后缀的函数使用向零舍入模式进行舍入操作。

_ru 为后缀的函数使用向上舍入(到正无穷大)舍入模式运行。

_rd 为后缀的函数使用向下舍入(到负无穷大)舍入模式进行操作。

浮点除法的准确性取决于代码是使用 -prec-div=false 还是 -prec-div=true 编译的。使用-prec-div=false编译代码时,正则除法/运算符和__fdividef(x,y)精度相同,但对于2126 < |y| <2128__fdividef(x,y) 提供的结果为零,而 / 运算符提供的正确结果在下表 中规定的精度范围内。此外,对于 2126 < |y| <2128,如果 x 为无穷大,则 __fdividef(x,y) 提供 NaN(作为无穷大乘以零的结果),而 / 运算符返回无穷大。另一方面,当使用 -prec-div=true 或根本没有任何 -prec-div 选项编译代码时, / 运算符符合 IEEE 标准,因为它的默认值为 true。

FunctionError bounds
__fadd_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__fsub_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__fmul_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__fmaf_[rn,rz,ru,rd](x,y,z)

IEEE-compliant.

__frcp_[rn,rz,ru,rd](x) IEEE-compliant.
__fsqrt_[rn,rz,ru,rd](x) IEEE-compliant.
__frsqrt_rn(x) IEEE-compliant.
__fdiv_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__fdividef(x,y)For |y| in [2-126, 2126], the maximum ulp error is 2.
__expf(x)The maximum ulp error is 2 + floor(abs(1.16 * x)).
__exp10f(x)The maximum ulp error is 2+ floor(abs(2.95 * x)).
__logf(x)For x in [0.5, 2], the maximum absolute error is 2-21.41, otherwise, the maximum ulp error is 3.
__log2f(x)For x in [0.5, 2], the maximum absolute error is 2-22, otherwise, the maximum ulp error is 2.
__log10f(x)For x in [0.5, 2], the maximum absolute error is 2-24, otherwise, the maximum ulp error is 3.
__sinf(x)For x in [-π,π], the maximum absolute error is 2-21.41, and larger otherwise.
__cosf(x)For x in [-π,π], the maximum absolute error is 2-21.19, and larger otherwise.
__sincosf(x,sptr,cptr)Same as __sinf(x) and __cosf(x).
__tanf(x)Derived from its implementation as __sinf(x) * (1/__cosf(x)).
__powf(x, y)Derived from its implementation as exp2f(y * __log2f(x)).

Double-Precision Floating-Point Functions

__dadd_rn()__dmul_rn() 映射到编译器从不合并到 FMAD 中的加法和乘法运算。 相比之下,由“*”和“+”运算符生成的加法和乘法将经常组合到 FMAD 中。

Table 11. Double-Precision Floating-Point Intrinsic Functions. (Supported by the CUDA Runtime Library with Respective Error Bounds)
FunctionError bounds
__dadd_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__dsub_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__dmul_[rn,rz,ru,rd](x,y)

IEEE-compliant.

__fma_[rn,rz,ru,rd](x,y,z)

IEEE-compliant.

__ddiv_[rn,rz,ru,rd](x,y)(x,y)

IEEE-compliant.

Requires compute capability > 2.

__drcp_[rn,rz,ru,rd](x)

IEEE-compliant.

Requires compute capability > 2.

__dsqrt_[rn,rz,ru,rd](x)

IEEE-compliant.

Requires compute capability > 2.

相关文章:

CUDA中的数学方法

CUDA中的数学方法 文章目录CUDA中的数学方法1. Standard FunctionsSingle-Precision Floating-Point FunctionsDouble-Precision Floating-Point Functions2. Intrinsic FunctionsSingle-Precision Floating-Point FunctionsDouble-Precision Floating-Point Functions参考手册…...

Elasticsearch基本概念和索引原理

一、Elasticsearch是什么&#xff1f; Elasticsearch是一个基于文档的NoSQL数据库&#xff0c;是一个分布式、RESTful风格的搜索和数据分析引擎&#xff0c;同时也是Elastic Stack的核心&#xff0c;集中存储数据。Elasticsearch、Logstash、Kibana经常被用作日志分析系统&…...

《NFL橄榄球》:堪萨斯城酋长·橄榄1号位

堪萨斯城酋长队&#xff08;Kansas City Chiefs&#xff09;是位于密苏里州堪萨斯城的职业美式橄榄球队&#xff1b;目前在全国橄榄球联盟隶属于美国橄榄球联合会(AFC)西区&#xff1b;其夏季训练营在威斯康星大学河瀑校区举行。 酋长队的前身是达拉斯得州佬队&#xff0c;这支…...

python+django在线教学网上授课系统vue

随着科技的进步&#xff0c;互联网已经开始慢慢渗透到我们的生活和学习中&#xff0c;并且在各个领域占据着越来越重要的部分&#xff0c;很多传统的行业都将面临着巨大的挑战&#xff0c;包括学习也不例外。现在学习竞争越来越激烈&#xff0c;人才的需求量越来越大&#xff0…...

二叉搜索树之AVL树

AVL树的概念二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&#xff0c;查找元素相当于在顺序表中搜索元素&#xff0c;效率低下。因此&#xff0c;两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上…...

全栈自动化测试技术笔记(二):准备工作的切入点

自动化测试技术笔记(二)&#xff1a;准备工作的切入点 上篇整理的技术笔记&#xff0c;聊了自动化测试的前期调研工作如何开展&#xff0c;最后一部分也提到了工作的优先级区分。 这篇文章&#xff0c;接上篇文章的内容&#xff0c;来聊聊自动化测试前期的准备工作&#xff0…...

57 长短期记忆网络(LSTM)【动手学深度学习v2】

57 长短期记忆网络&#xff08;LSTM&#xff09;【动手学深度学习v2】 深度学习学习笔记 学习视频&#xff1a;https://www.bilibili.com/video/BV1JU4y1H7PC/?spm_id_fromautoNext&vd_source75dce036dc8244310435eaf03de4e330 长短期记忆网络&#xff08;LSTM&#xff09…...

算法第十五期——动态规划(DP)之各种背包问题

目录 0、背包问题分类 1、 0/1背包简化版 【代码】 2、0/ 1背包的方案数 【思路】 【做法】 【代码】 空间优化1&#xff1a;交替滚动 空间优化2&#xff1a;自我滚动 3、完全背包 【思路】 【代码】 4、分组背包 核心代码 5、多重背包 多重背包解题思路1:转化…...

实现复选框全选和全不选的切换

今天&#xff0c;复看了一下JS的菜鸟教程&#xff0c;发现评论里面都是精华呀&#xff01;&#xff01; 看到函数这一节&#xff0c;发现就复选框的全选和全不选功能展开了讨论。我感觉挺有意思的&#xff0c;尝试实现了一下。 1. 全选、全不选&#xff0c;两个按钮&#xff…...

React hooks之useState用法(一)

系列文章目录 学习React已经有很长的一段时间了&#xff0c;今天决定重新回顾一下跟React相关的一些知识点 文章目录系列文章目录结构如下一、hooks是什么&#xff1f;useState可以能做什么二、如何使用useState&#xff08;&#xff09;第一步&#xff1a;创建【函数组件&…...

spring的简单理解

目录 1 .ioc容器&#xff08;控制反转&#xff09; 2. Aop面向切面编程 3. 事务申明 4. 注解的方式启动 5. spring是什么与他的优势 6. 代理设计模式&#xff08;比如aop&#xff09; 7. springmvc中相应json数据 8. 使用lombok来进行对代码的简化 9. 使用logback记录…...

Docker调用Intel集显实现FFmpeg硬解码

文章目录Docker调用Intel集显实现FFmpeg硬解码参考FFmpeg 集成qsv方式一 容器完成所有步骤方式二 容器完成部分步骤方式三 dockerfile部署Docker调用Intel集显实现FFmpeg硬解码 参考 ffmpeg_qsv_docker拉取该镜像可以实现FFmpeg集成vaapi的硬加速&#xff0c;通过dockerfile文…...

端到端模型(end-to-end)与非端到端模型

一、端到端&#xff08;end to end&#xff09; 从输入端到输出端会得到一个预测结果&#xff0c;将预测结果和真实结果进行比较得到误差&#xff0c;将误差反向传播到网络的各个层之中&#xff0c;调整网络的权重和参数直到模型收敛或者达到预期的效果为止&#xff0c;中间所…...

uniApp封装一个滑块组件

最近 项目中有一个需求 PC端动态设计的表单 移动端要能渲染出来 那么 就要去找到对应的组件 而其中 没有的 就包括滑块 没有又能怎么办 只能自己封装一个 我们直接上代码 <template><view class"u-slider" tap"onClick" :class"[disabled…...

运动基元(二):贝塞尔曲线

贝塞尔曲线是我第一个深入接触并使用于路径规划的运动基元。N阶贝塞尔曲线具有很多优良的特性,例如端点性、N阶可导性、对称性、曲率连续性、凸包性、几何不变性、仿射不变性以及变差缩减性。本章主要介绍贝塞尔曲线用于运动基元时几个特别有用的特性。 一、贝塞尔曲线的定义 …...

Android 11.0 关于Launcher3中调用截图功能总是返回null的解决方案

1.1概述 在11.0的系统产品开发中,在某些时候需要调用截图接口来进行截屏功能实现,而在Launcher3中发现调用系统截屏接口SurfaceControl.screenshot进行截图的时候始终为null, 获取不到系统当前页面的截屏功能,所以需要找到当前截屏失败的原因然后来实现截屏功能的实现,下面来…...

random随机数

random随机数 1.概述 random用来生成一些随机数&#xff0c;下面介绍random模块提供的方法根据需求生成不同的随机数。 2.random常用操作 2.1.random默认随机数 random()函数返回一个随机的浮点值&#xff0c;默认返回值范围在0 < n < 1.0区间 import randomfor i …...

【金三银四系列】Spring面试题-上(2023版)

Spring面试专题 1.Spring应该很熟悉吧&#xff1f;来介绍下你的Spring的理解 有些同学可能会抢答&#xff0c;不熟悉!!! 好了&#xff0c;不开玩笑&#xff0c;面对这个问题我们应该怎么来回答呢&#xff1f;我们给大家梳理这个几个维度来回答 1.1 Spring的发展历程 先介绍…...

linux基本功系列之tar命令实战

文章目录前言一. tar命令介绍二. 语法格式及常用选项三. 参考案例3.1 仅打包不压缩3.2 打包后使用调用压缩命令进行压缩3.3 列出文件的内容3.4 追加文件到tar命令中3.5 释放文件到指定的目录四 . 各种压缩方式的比较总结前言 大家好&#xff0c;又见面了&#xff0c;我是沐风晓…...

Prometheus服务发现

Prometheus服务发现介绍 Prometheus默认是采用pull的方式拉取监控数据的&#xff0c;每一个被抓取的目标都要暴露一个HTTP接口&#xff0c;prometheus通过这个接口来获取相应的指标数据&#xff0c;这种方式需要由prometheus-server决定采集的目标服务器有哪些&#xff0c;通过…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…...