当前位置: 首页 > news >正文

skimage.feature--corner_harris、hog、local_binary_pattern说明

skimage.feature说明–corner_harris、hog、local_binary_pattern

文章目录

  • skimage.feature说明--corner_harris、hog、local_binary_pattern
    • 1. 前言
    • 2. corner_harris
      • 2.1 介绍
      • 2.2 参数及返回
    • 3. hog
      • 3.1 介绍
      • 3.2 参数及返回
    • 4. local_binary_pattern
      • 4.1 介绍
      • 4.2 参数及返回
    • 5. 总结

1. 前言

scikit-image feature是一个强大的python可以调用的计算特征库。对于常见的图像特征可以直接调用scikit-image feature中封装好的函数来计算,速度也比自己编写的函数快。

2. corner_harris

2.1 介绍

skimage.feature.corner_harris(image, method='k', k=0.05, eps=1e-06, sigma=1)[source]

计算哈里斯角度测量响应图像。

该角点检测器使用来自自相关矩阵A的信息:
1
其中imx和imy是一阶导数,用高斯滤波器进行平均。角落测量然后被定义为:
2

3

2.2 参数及返回

  • 参数。image:ndarray输入图像。method:{‘k’,‘eps’},可选用于从自相关矩阵计算响应图像的方法。k:float,可选灵敏度因子,用于分离边缘的角点,通常范围为0,0.2。较小的k值会导致检测到尖角。eps:float,可选归一化因子(Noble的角点测量)。sigma:float,可选用于高斯核的标准偏差,用作自相关矩阵的加权函数。

  • 返回。ndarray Harris反应形象。

示例:

>>> from skimage.feature import corner_harris, corner_peaks
>>> square = np.zeros([10, 10])
>>> square[2:8, 2:8] = 1
>>> square.astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
>>> corner_peaks(corner_harris(square), min_distance=1)
array([[2, 2],[2, 7],[7, 2],[7, 7]

3. hog

3.1 介绍

skimage.feature.hog(image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(3, 3), block_norm='L1', visualise=False, transform_sqrt=False, feature_vector=True, normalise=None)[source]

提取给定图像的定向梯度直方图(HOG)。

如何计算面向梯度的直方图(HOG):

  1. 全局图像标准化(可选)
  2. 在x和y中计算渐变图像
  3. 计算梯度直方图
  4. 正常化块
  5. 展平成一个特征向量

3.2 参数及返回

  • 参数。图像:(M,N)ndarray输入图像(灰度)。方向:int,可选方向箱的数量。pixels_per_cell:2元组(int,int),可选的单元格大小(以像素为单位)。cells_per_block:2元组(int,int),可选每个块中的单元格数。block_norm:str {‘L1’,‘L1-sqrt’,‘L2’,‘L2-Hys’},可选块归一化方法:L1使用L1范数进行归一化。(默认)L1-sqrt使用L1-norm进行归一化,然后是平方根。L2规范化使用L2范数。使用L2范数进行L2-Hys归一化,然后将最大值限制为0.2(Hys代表滞后)并使用L2范数重新归一化。有关详细信息,请参阅R196,R197。可视化:布尔,可选还返回HOG的图像。transform_sqrt:bool,可选应用幂法压缩以在处理前对图像进行归一化。如果图像包含负值,请不要使用它。另请参阅下面的注释部分。feature_vector:bool,可选通过在返回前对结果调用.ravel()来返回数据作为特征向量。normalize:bool,不赞成参数已弃用。使用transform_sqrt进行幂法压缩。规范化已被弃用。

  • 返回。newarr:ndarray HOG将图像视为一维(展平)阵列。hog_image:ndarray(if visualize = True)HOG图像的可视化。

  • 注意。所提出的代码实现了从[R195]的HOG提取方法,其具有以下变化:(I)使用(3,3)单元的块((2,2));(II)单元内没有平滑(高斯空间窗口sigma = 8pix在论文中);(III)使用L1块标准化。幂律压缩也称为伽玛校正,用于减少阴影和光照变化的影响。压缩使黑暗区域变得更轻。当kwarg transform_sqrt设置为True,该函数计算每个颜色通道的平方根,然后将宏算法应用于图像。

4. local_binary_pattern

4.1 介绍

skimage.feature.local_binary_pattern(image, P, R, method='default')[source]

灰度和旋转不变LBP(局部二元模式)。LBP是一种可用于纹理分类的不变描述符。

4.2 参数及返回

  • 参数。image:(N,M)阵列Graylevel图像。P:int圆对称邻居设置点的数量(角度空间的量化)。R:float圆的半径(操作员的空间分辨率)。method:{‘default’,‘ror’,‘uniform’,‘var’}确定模式的方法。‘default’:原始的局部二值模式,它是灰度但不是旋转不变的。‘ror’:扩展灰度和旋转不变的默认实现。‘uniform’:改进的旋转不变性和均匀的模式以及角度空间的更精细的量化,灰度和旋转不变。‘nri_uniform’:非旋转不变的均匀图案变体,它只是灰度不变的R199。‘VAR’:旋转不变方差测量局部图像纹理的对比度,其是旋转但不是灰度不变的。

  • 返回:(N,M)阵列LBP图像。

5. 总结

scikit-image feature是一个强大的python可以调用的计算特征库,很方便使用。欢迎指正!

相关文章:

skimage.feature--corner_harris、hog、local_binary_pattern说明

skimage.feature说明–corner_harris、hog、local_binary_pattern 文章目录skimage.feature说明--corner_harris、hog、local_binary_pattern1. 前言2. corner_harris2.1 介绍2.2 参数及返回3. hog3.1 介绍3.2 参数及返回4. local_binary_pattern4.1 介绍4.2 参数及返回5. 总结…...

致敬白衣天使,学习Python读取

名字:阿玥的小东东 学习:Python、c 主页:阿玥的小东东 故事设定:现在学校要求对所有同学进行核酸采集,每位同学先在宿舍内等候防护人员(以下简称“大白”)叫号,叫到自己时去停车场排…...

JVM - 认识JVM规范

目录 重识JVM JVM规范作用及其核心 JVM 整体组成 理解ClassFile结构 ASM开发 重识JVM JVM概述JVM: Java Virtual Machine,也就是Java虚拟机所谓虚拟机是指: 通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的计算机系统…...

文献阅读笔记 # CodeBERT: A Pre-Trained Model for Programming and Natural Languages

《CodeBERT: A Pre-Trained Model for Programming and Natural Languages》EMNLP 2020 (CCF-B)作者主要是来自哈工大、中山大学的 MSRA 实习生和 MSRA、哈工大的研究员。资源:code | pdf相关资源:RoBERTa-base | CodeNN词汇: bimodal: 双模态…...

openHarmony的UI开发

自适应布局 拉伸能力 ​ Blank在容器主轴方向上,空白填充组件具有自动填充容器空余部分的能力。仅当父组件为Row/Column时生效,即是线性布局。这样便可以在两个固定宽度或高度的组件中间添加一个Blank(),将剩余空间占满,从而实现…...

【JavaSE】深入HashMap

文章目录1. HashMap概述2. 哈希冲突3. 树化与退化3.1 树化的意义3.2 树的退化4. 二次哈希5. put方法源码分析6. key的设计7. 并发问题参考 如何防止因哈希碰撞引起的DoS攻击_hashmap dos攻击_双子孤狼的博客-CSDN博客 为什么 HashMap 要用 h^(h >>&#…...

华为机试题:HJ62 查找输入整数二进制中1的个数(python)

文章目录博主精品专栏导航知识点详解1、input():获取控制台(任意形式)的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() :打印输出。1、整型int() :将指定进制&#xf…...

代码随想录训练营一刷总结|

分为几个大部分: 数组 最先接触的部分,虽然说感觉是最简单的,但是需要掌握好基础,特别是小心循环。这里面需要再仔细看的就是螺旋矩阵那一块,其他的在后续刷的时候能用一种方法一次a就行。 链表 需要注意链表的基础…...

CSS中的几种尺寸单位

一、尺寸单位 CSS 支持多种尺寸单位,包括: px:像素,固定大小单位em:相对于当前元素字体大小的单位rem:相对于根元素(HTML)字体大小的单位%:相对于父元素的百分比单位vh…...

运维必会:ansible剧本(piaybook)

playbooks 概述以及实例操作 Playbooks 组成部分: Inventory Modules Ad Hoc Commands Playbooks Tasks: 任务,即调用模块完成的某些操作 Variables: 变量 Templates: 模板 Handlers: 处理器,由某时间触发执行的操作 Roles: 角色 YAML 介绍…...

活动星投票午间修身自习室制作在线投票投票制作网页

“午间修身自习室”网络评选投票_免费小程序投票推广_小程序投票平台好处手机互联网给所有人都带来不同程度的便利,而微信已经成为国民的系统级别的应用。现在很多人都会在微信群或朋友圈里转发投票,对于运营及推广来说找一个合适的投票小程序能够提高工…...

C#泛型:高级静态语言的效率利器

文章目录引入类型约束子类泛型常用的泛型数据结构前文提要: 💎超快速成,零基础掌握C#开发中最重要的概念💎抽丝剥茧,C#面向对象快速上手💎Winform,最友好的桌面GUI框架💎懂了委托&a…...

澳大利亚访问学者申请流程总结

澳大利亚访问学者申请需要注意些什么?下面知识人网小编整理澳大利亚访问学者申请流程总结。1、取得wsk英语成绩,现在都是先买票再上车了。2、联系外导,申请意向接收函(email)。3、向留学基金委CSC提出申请。4、获批后,申请正式邀请…...

cookie和Session的作用和比较

目录 什么是cookie cookie的工作原理 什么是session Session的工作原理 为什么会有session和cookie cookie和session如何配合工作 cookie和Session作用 什么是会话 什么是cookie cookie是web服务器端向我们客户端发送的一块小文件,该文件是干嘛的呢&#xf…...

测试员都是背锅侠?测试人员避“锅”攻略,拿走不谢

最近发生了一起生产事故,究其根源,事故本身属于架构或者需求层面需要规避的问题,测试人员的责任其实是非常小的,但实际情况是:相关测试人员因此承担了很大的压力,成为质量问题的“背锅侠”。 实际上&#…...

C++: C++模板<template>

C template content😊前言😁模板💕1、泛型编程😍2、函数模板😒2.1:函数模板概念👌2.2:函数模板的格式😘2.3:函数模板原理😁2.4:函数模…...

chmod命令详解

用法:chmod [选项]… 模式[,模式]… 文件…  或:chmod [选项]… 八进制模式 文件…  或:chmod [选项]… --reference参考文件 文件… Change the mode of each FILE to MODE. With --reference, change the mode of each FILE to that of R…...

状态机设计中的关键技术

⭐本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。 🔥文章和代码已归档至【Github仓库&#xf…...

单片机开发---ESP32S3移植NES模拟器(二)

书接上文 《单片机开发—ESP32-S3模块上手》 《单片机开发—ESP32S3移植lvgl触摸屏》 《单片机开发—ESP32S3移植NES模拟器(一)》 暖场视频,小时候称这个为—超级曲线射门!!!!!&am…...

微信小程序nodej‘s+vue警局便民服务管理系统

本文首先介绍了设计的背景与研究目的,其次介绍系统相关技术,重点叙述了系统功能分析以及详细设计,最后总结了系统的开发心得在Internet高速发展的今天,我们生活的各个领域都涉及到计算机的应用,其中包括“最多跑一次”微信小程序的网络应用,在外国小程序的使用已经是很普遍的方…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

【JVM】- 内存结构

引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...