当前位置: 首页 > news >正文

数据结构(六)二叉树

一、树形结构

概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

1、有一个特殊的结点,称为根结点,根结点没有前驱结点

2、除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

3、树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6

树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6

叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点

根结点:一棵树中,没有双亲结点的结点;如上图:A

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙

森林:由m(m>=0)棵互不相交的树组成的集合称为森林

二、二叉树

概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

从上图可以看出:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

两种特殊的二叉树

1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵

二叉树的层数为K,且结点总数是

,则它就是满二叉树

2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n

个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完

全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)(i>0)个结点

2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 2^k-1(k>=0)

3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1

4. 具有n个结点的完全二叉树的深度k为 log2(n+1)上取整

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有

-若i>0,双亲序号:(i-1)/2i=0,i为根结点编号,无双亲结点

-若2i+1<n,左孩子序号:2i+1,否则无左孩子

-若2i+2<n,右孩子序号:2i+2,否则无右孩子

二叉树的存储

二叉树的存储结构分为:顺序存储类似于链表的链式存储

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点
}

孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树

二叉树的基本操作

class TreeNode{public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}
}
public class TestBinaryTree {public TreeNode creteTree(){TreeNode A=new TreeNode('A');TreeNode B=new TreeNode('B');TreeNode C=new TreeNode('C');TreeNode D=new TreeNode('D');TreeNode E=new TreeNode('E');TreeNode F=new TreeNode('F');TreeNode G=new TreeNode('G');TreeNode H=new TreeNode('H');A.left=B;A.right=C;B.left=D;B.right=E;E.right=H;C.left=F;C.right=G;return A;//根节点}// 前序遍历void preOrder(TreeNode root){if (root==null){return;}System.out.print(root.val+" ");preOrder(root.left);preOrder(root.right);}// 中序遍历void inOrder(TreeNode root){if (root==null){return;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}// 后序遍历void postOrder(TreeNode root){if (root==null){return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val+" ");}public static int count=0;// 获取树中节点的个数int size1(TreeNode root) {if (root==null){return 0;}count++;size1(root.left);size1(root.right);return count;}public int size(TreeNode root){if (root==null){return 0;}int tmp=size(root.left)+size(root.right)+1;return tmp;}public static int leafCount=0;// 获取叶子节点的个数void getLeafNodeCount1(TreeNode root) {if (root==null){return;}if (root.left==null&&root.right==null){leafCount++;}getLeafNodeCount1(root.left);getLeafNodeCount1(root.right);}// 子问题思路-求叶子结点个数public int getLeafNodeCount(TreeNode root){if (root==null){return 0;}if (root.left==null&&root.right==null){return 1;}int tmp=getLeafNodeCount(root.left)+getLeafNodeCount(root.right);return tmp;}// 获取第K层节点的个数int getKLevelNodeCount(TreeNode root,int k){if (root==null){return 0;}if (k==1){return 1;}int tmp=getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);return tmp;}// 获取二叉树的高度int getHeight(TreeNode root) {if (root==null){return 0;}int leftH=getHeight(root.left);int rightH=getHeight(root.right);return leftH > rightH ? leftH+1 : rightH+1;}// 检测值为value的元素是否存在TreeNode find(TreeNode root, char val) {if (root==null){return null;}if (root.val==val){return root;}TreeNode ret=find(root.left,val);if (ret!=null){return ret;}ret=find(root.right,val);if (ret!=null){return ret;}return null;}
}

相关文章:

数据结构(六)二叉树

一、树形结构概念树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a;1、有一个…...

Docker buildx 的跨平台编译

docker buildx 默认的 docker build 命令无法完成跨平台构建任务&#xff0c;我们需要为 docker 命令行安装 buildx 插件扩展其功能。buildx 能够使用由 Moby BuildKit 提供的构建镜像额外特性&#xff0c;它能够创建多个 builder 实例&#xff0c;在多个节点并行地执行构建任…...

【java基础】方法重载和方法重写

文章目录方法重载方法重写方法重载 方法重载就是可以在一个类里面定义多个相同名称的方法&#xff0c;只需要参数列表的个数或者类型不同就行。 public class Overload {public int add(int a, int b) {return a b;}public double add(double a, double b) {return a b;}}对…...

Gradle7.4安装与基本使用

文章目录一.前言二.下载Gradle三.Gradle镜像源-全局级配置四.配置Gradle wrapper-项目级配置五.Gradle对测试的支持五.生命周期5.1 settings文件六.Gradle任务入门6.1 任务行为6.2 任务依赖方式七. Dependencies依赖引入7.1 依赖冲突及解决方案八.Gradle整合多模块SpringBoot九…...

[系统安全] 虚拟化安全之虚拟化概述

本文为笔者从零基础学习系统安全相关内容的笔记,如果您对系统安全、逆向分析等内容感兴趣或者想要了解一些内容,欢迎关注。本系列文章将会随着笔者在未来三年的读研过程中持续更新,由于笔者现阶段还处于初学阶段,不可避免参照复现各类书籍内容,如书籍作者认为侵权请告知,…...

如何从零开始系统的学习项目管理?

经常会有人问&#xff0c;项目管理到底应该学习一些什么&#xff1f;学习考证之后能得到什么价值&#xff1f; 以下我就总结一下内容 一&#xff0c;学习项目管理有用吗&#xff1f; 有效的项目管理带来的益处大致包括以下几个方面&#xff1a;更有效达成业务目标、满足相关…...

面试题-----

面试题---- 一.HTML 1.常用哪些浏览器进行测试&#xff0c;对应有哪些内核&#xff1f; ①IE------------------->Trident ②Chrome---------->以前是Webkit现在是Blink ③Firefox------------>Gecko ④Safari-------------->Webkit ⑤Opera--------------&…...

线材-电子线载流能力

今天来讲的是关于电子线的一个小知识&#xff0c;可能只做板子的工程师遇到此方面的问题会比较少&#xff0c;做整机的工程师则必然会遇到此方面问题&#xff0c;那就是线材问题。 下面主要说下电子线的过电流能力。&#xff08;文末有工具下载&#xff09;电子线&#xff08;h…...

单变量回归问题

单变量回归问题 对于某房价问题&#xff0c;x为房屋大小&#xff0c;h即为预估房价&#xff0c;模型公式为&#xff1a; hθ(x)θ0θ1xh_{\theta}(x)\theta_{0}\theta_{1}x hθ​(x)θ0​θ1​x 要利用训练集拟合该公式&#xff08;主要是计算θ0、θ1\theta_{0}、\theta_{1}θ…...

ubuntu/linux系统知识(36)linux网卡命名规则

文章目录背景命名规范系统默认命名规则优势背景 很久以前Linux 操作系统的网卡设备的传统命名方式是 eth0、eth1、eth2等&#xff0c;属于biosdevname 命名规范。 服务器通常有多块网卡&#xff0c;有板载集成的&#xff0c;同时也有插在PCIe插槽的。Linux系统的命名原来是et…...

java的一些冷知识

接口并没有继承Object类首先接口是一种特殊的类&#xff0c;理由就是将其编译后是一个class文件大家都知道java类都继承自Object&#xff0c;但是接口其实是并没有继承Object类的 可以自己写代码测试: 获取接口类的class对象后遍历它的methods&#xff0c;可以发现是不存在Obje…...

java代理模式

代理模式 为什么要学习代理模式&#xff1f;因为这是SpringAOP的底层&#xff01; 【SpringAOP和SpingMVC}】 代理模式的分类&#xff1a; 静态代理 动态代理 代理就像这里的中介&#xff0c;帮助你去做向房东租房&#xff0c;你不能直接解出房东&#xff0c;而房东和中介…...

JUC包:CountDownLatch源码+实例讲解

1 缘起 有一次听到同事谈及AQS时&#xff0c;我有很多点懵&#xff0c; 只知道入队和出队&#xff0c;CLH&#xff08;Craig&#xff0c;Landin and Hagersten&#xff09;锁&#xff0c;并不了解AQS的应用&#xff0c; 同时结合之前遇到的多线程等待应用场景&#xff0c;发现…...

Log4j2基本使用

文章目录1. Log4j2入门2. Log4j2配置3. Log4j2异步日志4. Log4j2的性能Apache Log4j 2是对Log4j的升级版&#xff0c;参考了logback的一些优秀的设计&#xff0c;并且修复了一些问题&#xff0c;因此带 来了一些重大的提升&#xff0c;主要有&#xff1a; 异常处理&#xff0c…...

A2L在CAN FD总线的使用

文章目录 前言CAN时间参数BTL CyclesTime Quantum时间份额SWJ同步跳转宽度波特率计算采样点计算CAN FD的第二采样点SSP推荐配置A2L配置总结前言 A2L作为XCP标定协议的载体,包括了总线信息的定义。本文介绍如何将基于CAN总线的A2L扩展为支持CAN-FD的A2L CAN时间参数 在介绍配…...

Android JetPack之启动优化StartUp初始化组件的详解和使用

一、背景 先看一下Android系统架构图 在Android设备中&#xff0c;设备先通电&#xff08;PowerManager&#xff09;&#xff0c;然后加载内核层&#xff0c;内核走完&#xff0c;开始检查硬件&#xff0c;以及为硬件提供的公开接口&#xff0c;然后进入到库的加载。库挂载后开…...

[11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳

升级学校云系统我们学校要根据目前学生互联网在线学习、教师教学资源电子化、教学评价过程化精细化的需求&#xff0c;计划升级为云教学系统。请同学们根据学校发展实际考虑云交付模型包含哪些&#xff1f;云部署采用什么模型最合适&#xff1f;请具体说明。9月3日买电脑还是租…...

C++11/C++14:lambda表达式

概念 lambda表达式&#xff1a;是一种表达式&#xff0c;是源代码的组成部分闭包&#xff1a;是lambda表达式创建的运行期对象&#xff0c;根据不同的捕获模式&#xff0c;闭包会持有数据的副本或引用闭包类&#xff1a;用于实例化闭包的类&#xff0c;每个lambda表达式都会触…...

算法课堂-分治算法

分治算法 把一任务分成几部分&#xff08;通常是两部分&#xff09;来完成&#xff08;或只完成一部分&#xff09;&#xff0c;从而实现整个任务的完成 或者你可以把递归理解为分治算法的一部分 因为递归就是把问题分解来解决问题 例子 称假币 最笨的方法&#xff1a;两两称…...

操作系统权限提升(十六)之绕过UAC提权-CVE-2019-1388 UAC提权

系列文章 操作系统权限提升(十二)之绕过UAC提权-Windows UAC概述 操作系统权限提升(十三)之绕过UAC提权-MSF和CS绕过UAC提权 操作系统权限提升(十四)之绕过UAC提权-基于白名单AutoElevate绕过UAC提权 操作系统权限提升(十五)之绕过UAC提权-基于白名单DLL劫持绕过UAC提权 注&a…...

实例9:四足机器人运动学正解平面RR单腿可视化

实例9&#xff1a;四足机器人正向运动学单腿可视化 实验目的 通过动手实践&#xff0c;搭建mini pupper四足机器人的腿部&#xff0c;掌握机器人单腿结构。通过理论学习&#xff0c;熟悉几何法、旋转矩阵法在运动学正解&#xff08;FK&#xff09;中的用处。通过编程实践&…...

堆的基本存储

一、概念及其介绍堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。堆满足下列性质&#xff1a;堆中某个节点的值总是不大于或不小于其父节点的值。堆总是一棵完全二叉树。二、适用说明堆是利用完全二叉树的结构来维护一组数…...

如何获取物体立体信息通过一个相机

大家都知道的3D 技术是通过双眼视觉差异 得到的 但是3D的深度并没有那么强 为什么眼睛看到的就那么强 这无法让我们相信这个视觉差理论是和人眼睛立体感是一个原理 这个如今3D 电影都在用的技术 是和真正的人眼立体感 不一样的 或者说是有瑕疵的 分析一下现在的立体感技术 是通…...

【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)

目录 一、背景和挖掘目标 1、问题背景 2、传统方法的缺陷 3、原始数据情况 4、挖掘目标 二、分析方法和过程 1、初步分析 2、总体过程 第1步&#xff1a;数据获取 第2步&#xff1a;数据预处理 第3步&#xff1a;构建模型 三、思考和总结 项目地址&#xff1a;Data…...

一些硬件学习的注意事项与快捷方法

xilinx系列软件 系统适用版本 要安装在Ubuntu系统的话&#xff0c;要注意提前看好软件适用的版本&#xff0c;不要随便安好了Ubuntu系统又发现对应版本的xilinx软件不支持。 如下图&#xff0c;发行说明中会说明这个版本的软件所适配的系统版本。 下载 vivado vitis这些都可以…...

【Tomcat】Tomcat安装及环境配置

文章目录什么是Tomcat为什么我们需要用到Tomcattomcat下载及安装1、进入官网www.apache.org&#xff0c;找到Projects中的project List2、下载之后&#xff0c;解压3、找到tomcat目录下的startup.bat文件&#xff0c;双击之后最后结果出现多少多少秒&#xff0c;表示安装成功4、…...

负载均衡:LVS 笔记(二)

文章目录LVS 二层负载均衡机制LVS 三层负载均衡机制LVS 四层负载均衡机制LVS 调度算法轮叫调度&#xff08;RR&#xff09;加权轮叫调度&#xff08;WRR&#xff09;最小连接调度&#xff08;LC&#xff09;加权最小连接调度&#xff08;WLC&#xff09;基于局部性的最少链接调…...

SEO优化:干货技巧分享,包新站1-15天100%收录首页

不管是老域名还是新域名&#xff0c;不管是多久没有收录首页的站&#xff0c;此法周期7-30天&#xff0c;包首页收录&#xff01;本人不喜欢空吹牛逼不实践的理论&#xff0c;公布具体操作&#xff1a;假如你想收录的域名是a.com&#xff0c;那么准备如下材料1.购买5-10个最便宜…...

JavaWeb测试题

【第四小组】【姓名&#xff1a;郑梦飞】说明&#xff1a;上方【组】填入所在的组&#xff0c;上方【姓名】填入自己的真实姓名。答题方式&#xff0c;基于Word文档基础上答题编程题可利用工具编程完以后&#xff0c;复制到该文档内。答完以后&#xff0c;导成PDF。以姓名.PDF命…...

Java EE|TCP/IP协议栈之数据链路层协议详解

文章目录一、数据链路层协议感性认识数据链路层简介以太网简介特点二、以太网数据帧格式详解帧头不同类型对应的载荷三、关于MTU什么是MTUMTU有什么作用ip分片&#xff08;了解&#xff09;参考一、数据链路层协议感性认识 数据链路层简介 从上图可以看出 &#xff0c; 在TCP/…...