当前位置: 首页 > news >正文

Pandas 高级教程——高级时间序列分析

Python Pandas 高级教程:高级时间序列分析

Pandas 提供了强大的时间序列处理功能,使得对时间序列数据进行高级分析变得更加灵活和方便。在本篇博客中,我们将深入介绍 Pandas 中的高级时间序列分析技术,并通过实例演示如何应用这些功能。

1. 安装 Pandas

确保你已经安装了 Pandas。如果尚未安装,可以使用以下命令:

pip install pandas

2. 导入 Pandas 库

在使用 Pandas 进行高级时间序列分析之前,导入 Pandas 库:

import pandas as pd

3. 创建示例数据

在学习高级时间序列分析之前,首先创建一个示例的时间序列数据:

# 创建示例数据
date_rng = pd.date_range(start='2022-01-01', end='2022-12-31', freq='D')
time_series_data = pd.DataFrame(date_rng, columns=['date'])
time_series_data['value'] = range(len(date_rng))

4. 设置时间索引

将日期列设置为时间索引:

# 设置时间索引
time_series_data.set_index('date', inplace=True)

5. 重采样

5.1 降采样

将数据从日频率降采样到月频率:

# 降采样到月频率
monthly_data = time_series_data.resample('M').sum()
5.2 升采样

将数据从日频率升采样到小时频率:

# 升采样到小时频率
hourly_data = time_series_data.resample('H').pad()

6. 移动窗口操作

6.1 移动平均
# 计算7天的移动平均
time_series_data['rolling_mean'] = time_series_data['value'].rolling(window=7).mean()
6.2 移动总和
# 计算30天的移动总和
time_series_data['rolling_sum'] = time_series_data['value'].rolling(window=30).sum()

7. 指数加权移动平均

# 计算指数加权移动平均
time_series_data['ewma'] = time_series_data['value'].ewm(span=30, adjust=False).mean()

8. 滞后和超前

8.1 滞后
# 滞后一期
time_series_data['lag_1'] = time_series_data['value'].shift(1)
8.2 超前
# 超前一期
time_series_data['lead_1'] = time_series_data['value'].shift(-1)

9. 季节性分解

from statsmodels.tsa.seasonal import seasonal_decompose# 季节性分解
result = seasonal_decompose(time_series_data['value'], model='additive', period=30)
trend = result.trend.dropna()
seasonal = result.seasonal.dropna()
residual = result.resid.dropna()

10. 自相关和偏自相关

10.1 自相关图
from statsmodels.graphics.tsaplots import plot_acf# 绘制自相关图
plot_acf(time_series_data['value'], lags=30)
plt.show()
10.2 偏自相关图
from statsmodels.graphics.tsaplots import plot_pacf# 绘制偏自相关图
plot_pacf(time_series_data['value'], lags=30)
plt.show()

11. 时间序列模型

from statsmodels.tsa.arima.model import ARIMA# 拟合 ARIMA 模型
model = ARIMA(time_series_data['value'], order=(1,1,1))
fit_model = model.fit()

12. Prophet 时间序列预测

from fbprophet import Prophet# 使用 Prophet 进行时间序列预测
prophet_model = Prophet()
prophet_model.fit(time_series_data.reset_index().rename(columns={'date': 'ds', 'value': 'y'}))
future = prophet_model.make_future_dataframe(periods=365)
forecast = prophet_model.predict(future)

13. 总结

通过学习以上 Pandas 中的高级时间序列分析技术,你可以更灵活地处理和分析时间序列数据。这些方法包括重采样、移动窗口操作、滞后和超前、季节性分解、自相关和偏自相关分析以及时间序列模型的拟合。希望这篇博客能够帮助你更好地运用 Pandas 进行高级时间序列分析。

相关文章:

Pandas 高级教程——高级时间序列分析

Python Pandas 高级教程:高级时间序列分析 Pandas 提供了强大的时间序列处理功能,使得对时间序列数据进行高级分析变得更加灵活和方便。在本篇博客中,我们将深入介绍 Pandas 中的高级时间序列分析技术,并通过实例演示如何应用这些…...

解决Pycharm pip安装模块太慢问题,pycharm2022没有manage repositories配置镜像源

解决方案 方法清华阿里云中国科技大学华中理工大学 或者直接-i 加镜像 方法 URL写下面任意一个 清华 https://pypi.tuna.tsinghua.edu.cn/simple阿里云 http://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/华中理工大学 http:/…...

十二:爬虫-Scrapy框架(上)

一:Scrapy介绍 1.Scrapy是什么? Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架(异步爬虫框架) 通常我们可以很简单的通过 Scrapy 框架实现一个爬虫,抓取指定网站的内容或图片 Scrapy使用了Twisted异步网…...

BUUCTF Reverse/[2019红帽杯]Snake

BUUCTF Reverse/[2019红帽杯]Snake 下载解压缩后得到可执行文件,而且有一个unity的应用程序,应该是用unity编写的游戏 打开是一个贪吃蛇游戏 用.NET Reflector打开Assembly-CSharp.dll。(unity在打包后,会将所有的代码打进一个Ass…...

概率论相关题型

文章目录 概率论的基本概念放杯子问题条件概率与重要公式的结合独立的运用 随机变量以及分布离散随机变量的分布函数特点连续随机变量的分布函数在某一点的值为0正态分布标准化随机变量函数的分布 多维随机变量以及分布条件概率max 与 min 函数的相关计算二维随机变量二维随机变…...

C#中的Attribute详解(上)

C#中的Attribute详解(上) 一、Attribute是什么二、Attribute的作用三、Attribute与注释的区别四、系统Attribute范例1、如果不使用Attribute,为了区分这四类静态方法,我们只能通过注释来说明,但这样做会给系统带来很多…...

天津医科大学临床医学院专升本药学专业有机化学考试大纲

天津医科大学临床医学院高职升本科专业课考试大纲药学专业《有机化学》科目考试大纲 一、考试基本要求 本考试大纲主要要求考生对《有机化学》基本概念有较深入的了解,能够系统地掌握各类化合物的命名、结构特点及立体异构、主要性质、反应、来源和合成制备方法等…...

电脑开机自动断电,简单4招,快速解决!

“不知道我的电脑最近是怎么回事,每次一开机就会出现自动断电的情况,有什么方法可以解决吗?” 在使用电脑时,由于电源供应不稳定或过热,以及各种硬件问题,可能会导致电脑开机自动断电。遇到这种情况&#x…...

线程基础知识(三)

前言 之前两篇文章介绍了线程的基本概念和锁的基本知识,本文主要是学习同步机制,包括使用synchronized关键字、ReentrantLock等,了解锁的种类,死锁、竞争条件等并发编程中常见的问题。 一、关键字synchronized synchronied关键…...

elasticsearch系列七:聚合查询

概述 今天咱们来看下es中的聚合查询,在es中聚合查询分为三大类bucket、metrics、pipeline,每一大类下又有十几种小类,咱们各举例集中,有兴许的同学可以参考官网:https://www.elastic.co/guide/en/elasticsearch/refere…...

SQL面试题挑战11:访问会话切割

目录 问题:SQL解答: 问题: 如下为某电商公司用户访问网站的数据,包括用户id和访问时间两个字段。现有如下规则:如果某个用户的连续的访问记录时间间隔小于60秒,则属于同一个会话,现在需要计算每…...

2023“楚怡杯”湖南省赛“信息安全管理与评估“--应急响应(高职组)

2023“楚怡杯”湖南省“信息安全管理与评估”(高职组)任务书 2023“楚怡杯”湖南省“信息安全管理与评估”(高职组)任务书第一阶段竞赛项目试题第二阶段竞赛项目试题网络安全事件响应:需要环境私聊博主:2023“楚怡杯”湖南省“信息安全管理与评估”(高职组)任务书 第一…...

【Python百宝箱】Python引领制造变革:CAM技术全景解析与实战指南

Python 驭技术潮流:探索计算机辅助制造的全方位工具库 前言 在当今制造业的快速发展中,计算机辅助制造(Computer-Aided Manufacturing,CAM)技术扮演着至关重要的角色。为了提高制造效率、优化工艺流程以及实现数字化…...

【新版Hi3559AV100 旗舰8K30 AI摄像机芯片】

新版Hi3559AV100 旗舰8K30 AI摄像机芯片 一、总体介绍 Hi3559AV100是专业的8K Ultra-HD Camera SOC,它提供了8K30/4K120广播级图像质量的数字视频录制,支持8路Sensor输入,支持H.265编码输出或影视级的RAW数据输出,并集成高性能ISP…...

小样本学习idea(不断更新)

在此整理并记录自己的思考过程,其中不乏有一些尚未成熟或者尚未实现的idea,也有一些idea实现之后没有效果或者正在实现,当然也有部分idea已写成论文正在投稿,都是自己的一些碎碎念念的思考,欢迎交流。 研一上学期 9.…...

表情包搜索网站

一个非常不错的表情包搜索网站,输入关键词即可得到所有相关的表情,还可以选择套图下载,自制表情,非常给力666 可以点击下载,会新建窗口打开图片,鼠标右键“图片另存为”,下载文件名手动补充“…...

Linux账号和权限管理

目录 一、用户账号和组账号概述 1、用户账号类型 2、组账号 1.基本组(私有组) 2.附加组(公共组) 3、ID 1.UID 2.GID 4、用户和账号管理 1.文件位置 2.useradd-----创建用户 3.userdel——删除用户账号 4.usermod---修…...

Qt/QML编程学习之心得:QML和C++的相互调用(十五)

Qt下的QML说到底是类似于JavaScript的一种解释性语言,习惯了VC的MVC(Veiw+Control)的模式,那种界面视图任何事件都是和C++的cpp中处理函数一一对应,在类中也有明确的说明的。一下子玩Qt会觉得哪里对不上,比如使用QML这种节脚本语言贴了图做了layout布局,那么一个按钮的o…...

月入10.5K,专科小伙转行网优:据说每个领域都有一个“显眼包”

网络热词流行的今天,显眼包一词又上热搜。除了熟知的内娱显眼包外,其实各行业也都有自己的“显眼包”。 显眼包又叫“现眼包”看似丢人现眼,实则是个“褒义词”,他们勇敢自信,积极乐观,敢于展示自己&#x…...

Python自动化测试:选择最佳的自动化测试框架

在开始学习python自动化测试之前,先了解目前市场上的自动化测试框架有哪些? 随着技术的不断迭代更新,优胜劣汰也同样发展下来。从一开始工具型自动化,到现在的框架型;从一开始的能用,到现在的不仅能用&…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

Kafka主题运维全指南:从基础配置到故障处理

#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...