当前位置: 首页 > news >正文

数据统计:词频统计、词表生成、排序及计数、词云图生成

文章目录

  • 📚输入及输出
  • 📚代码实现

📚输入及输出

  • 输入:读取一个input.txt,其中包含单词及其对应的TED打卡号。
    在这里插入图片描述

  • 输出

    • output.txt:包含按频率降序排列的每个单词及其计数(这里直接用于后续的词云图生成)。
      在这里插入图片描述

    • output_word.json:包含每个单词及其计数,以及与之关联的TED打卡号列表,生成一个json文件(按字母序排列,用于后续网页数据导入)。
      在这里插入图片描述

    • output2.txt:按字母顺序排序的所有单词,即导出一个单词词表(可以导入到不背单词里生成自定义词表)。
      在这里插入图片描述

    • word_count.txt:记录截至每篇TED打卡号时涉及到的单词总数(该数据用于绘制后续的折线图)。
      在这里插入图片描述

  • 生成词云:在处理数据后,脚本读取output.txt并生成基于单词频率的词云,并将词云保存至指定目录。
    在这里插入图片描述

📚代码实现

  • 逻辑梳理

    • 在函数中使用了两个defaultdict,一个用于统计单词出现的频率,另一个用于记录单词对应的打卡号集合。
    • 打开输入文件,并逐行读取单词及其对应的打卡号,对于每个单词,统计其出现的频率,并将打卡号添加到对应的集合中。同时,对每篇TED的打卡号进行统计,记录每篇 TED 结束时涉及到的当前单词总数量,写入output_word_count_txt,对应word_count.txt
    • 统计完所有单词后,对单词频率进行排序,并将排序后的结果写入output_txt_file,对应input.txt
    • 将单词、频率和相应的(排序过后的)打卡号列表存储为 JSON 文件,对应output_word.json
    • 将所有单词按字母顺序写入output_txt_file_sorted中,对应output2.txt
  • 具体详见注释

    import json
    from collections import defaultdict
    from wordcloud import WordCloud
    import matplotlib.pyplot as plt
    import redef count_word_frequency(input_file, output_txt_file, output_word_json_file, output_txt_file_sorted, output_word_count_txt):# 使用defaultdict初始化两个字典,用于统计单词出现频率、单词对应打卡号集合word_count = defaultdict(int)# 设置为set集合自动去重,单词对应的打卡号集合word_numbers = defaultdict(set)  current_number = 0  # 当前打卡号初始化为0# 创建一个空的单词计数分析文本文件open(output_word_count_txt, 'w').close()# 打开输入文件并逐行读取单词及其对应的数字with open(input_file, 'r') as file:for line in file:line_parts = line.strip().split()word = " ".join(line_parts[:-1])  # 提取单词number = int(line_parts[-1])  # 提取打卡号# 如果当前打卡号与前一个不同(即已经开始下一篇了),记录前一个打卡号(即刚刚完成的那一篇)对应的(截至该篇的)单词总数到output_word_count_txt中if number != current_number:current_number = number# 用sum函数来统计word_numbers中非空集合的数量,即当前TED打卡号下已经出现过的单词数current_unique_count = sum(1 for word_set in word_numbers.values() if len(word_set) > 0)with open(output_word_count_txt, 'a') as count_file:count_file.write(f"{current_number-1} {current_unique_count}\n")# 统计单词的频率及相应的打卡号(这里排除了同一个单词在一片篇TED里多次记录的重复计数情况)if number not in word_numbers[word]:  word_count[word] += 1word_numbers[word].add(number)  # 对每个单词的打卡号进行排序,使得最后TED打卡号列表按序显示for word in word_numbers:word_numbers[word] = sorted(word_numbers[word])# 补充记录最后一个打卡号对应的(截至该篇的)单词总数到output_word_count_txt中current_unique_count = sum(1 for word_set in word_numbers.values() if len(word_set) > 0)with open(output_word_count_txt, 'a') as count_file:count_file.write(f"{current_number} {current_unique_count}\n")# 对单词频率进行排序,并将排序后的结果写入输出文本文件中sorted_words = sorted(word_count.items(), key=lambda x: (-x[1], x[0]))with open(output_txt_file, 'w') as file_txt:for word, count in sorted_words:file_txt.write(word + " " + str(count) + "\n")# 将单词、频率和相应的打卡号列表存储为JSON文件word_data = []for word, count in word_count.items():word_entry = {"word": word,"count": count,"numbers": list(word_numbers[word])  }word_data.append(word_entry)word_data_sorted = sorted(word_data, key=lambda x: x["word"])with open(output_word_json_file, 'w') as file_word_json:json.dump(word_data_sorted, file_word_json, indent=4)# 将所有单词按字母顺序写入输出文本文件中all_words = list(word_count.keys())all_words.sort()with open(output_txt_file_sorted, 'w') as file_txt_sorted:file_txt_sorted.write('\n'.join(all_words) + '\n')# 定义输入文件和输出文件的名称
    input_file = "input.txt"
    output_txt_file = "output.txt"
    output_word_json_file = "output_word.json"
    output_txt_file_sorted = "output2.txt"
    output_word_count_txt = "word_count.txt"# 调用函数统计单词频率并生成相关输出
    count_word_frequency(input_file, output_txt_file, output_word_json_file, output_txt_file_sorted, output_word_count_txt)# 读取输出文本文件的单词频率数据
    words = []
    with open('output.txt', 'r', encoding='utf-8') as file:for line in file:# 使用正则表达式匹配每行的单词和对应的频率match = re.match(r'(.+?)\s+(\d+)', line)if match:  # 如果匹配成功word = match.group(1)  # 提取匹配到的单词部分freq = int(match.group(2))  # 提取匹配到的数字部分作为频率words.append((word, freq))  # 将单词和对应的频率以元组的形式添加到列表中# 生成词云图像并保存为文件
    wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(dict(words))
    plt.figure(figsize=(10, 6))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    wordcloud.to_file('./images/wordcloud.png')
    plt.show()
    

相关文章:

数据统计:词频统计、词表生成、排序及计数、词云图生成

文章目录 📚输入及输出📚代码实现 📚输入及输出 输入:读取一个input.txt,其中包含单词及其对应的TED打卡号。 输出 output.txt:包含按频率降序排列的每个单词及其计数(这里直接用于后续的词云…...

W801学习笔记二十四:NES模拟器游戏

之前已经实现了NES模拟器玩游戏。W801学习笔记九:HLK-W801制作学习机/NES游戏机(模拟器) 现在要在新版本掌机中移植过来。 1、把NES文件都拷贝到SD卡中。 这回不会受内存大小限制了。我这里拷贝了4个,还可以拷贝更多。 2、应用初始化中,加载…...

ECMAScript 6简介

ECMAScript 6简介 发布日期目标ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 ESx标准 命名规则 ECMAScript 的历史 1. ECMAScript 6简介 1.1. 发布日期 ECMAScript 6.0(以下简称 ES6)是 JavaScript 语言的下一代标准,已…...

第1个数据库:编号,文本,时间,

写一个数据库 编号 文本 时间1 第一个文本 有100万条数据 -- 创建一个名为texts的表格来存储数据 CREATE TABLE texts ( id INTEGER PRIMARY KEY, text TEXT, time TIMESTAMP DEFAULT CURRENT_TIMESTAMP);-- 插入数据INSERT INTO texts (text) VALUES (第一个文…...

线性数据结构-手写链表-LinkList

为什么需要手写实现数据结构? 其实技术的本身就是基础的积累和搭建的过程,基础扎实 地基平稳 万丈高楼才会久战不衰,做技术能一通百,百通千就不怕有再难得技术了。 一:链表的分类 主要有单向,双向和循环链表…...

快手客户端一二面+美团前端一面+腾讯企业微信开发客户端一面

快手一面结志 1、自我介绍 2、对称加密非对称加密 3、TCP/UDP 4、在学校有什么课程是强项,说了过去几次面试中面到的C的语言基础知识 5、问C、Java中兴趣在哪里 6、问到项目,自己做的还是跟着学校老师做的,同样问到兴趣在哪里 7、LRU …...

探索数据结构

什么是数据结构 数据结构是由:“数据”与“结构”两部分组成 数据与结构 数据:如我们所看见的广告、图片、视频等,常见的数值,教务系统里的(姓名、性别、学号、学历等等); 结构:当…...

VMware虚拟机中ubuntu使用记录(6)—— 如何标定单目相机的内参(张正友标定法)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、张正友相机标定法1. 工具的准备2. 标定的步骤(1) 启动相机(2) 启动标定程序(3) 标定过程的操作(5)可能的报错 3. 标定文件内容解析 前言 张正友相机标定法…...

每日OJ题_记忆化搜索②_力扣62. 不同路径(三种解法)

目录 力扣62. 不同路径 解析代码1_暴搜递归(超时) 解析代码2_记忆化搜索 解析代码3_动态规划 力扣62. 不同路径 62. 不同路径 难度 中等 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器…...

【微信小程序开发】微信小程序、大前端之flex布局方式详细解析

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

代码随想录算法训练营第二十天:二叉树成长

代码随想录算法训练营第二十天:二叉树成长 110.平衡二叉树 力扣题目链接(opens new window) 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝…...

Opensbi初始化分析:设备初始化-warmboot

Opensbi初始化分析:设备初始化-warmboot 设备初始化sbi_init函数init_warmboot函数coolboot & warmbootwait_for_coldboot函数domain && scratch(coldboot所特有)console初始化及print相关工作(coldboot所特有)系统调用的相关初始化(coldboot所特有)综上设备…...

软考 系统架构设计师系列知识点之软件可靠性基础知识(13)

接前一篇文章:软考 系统架构设计师系列知识点之软件可靠性基础知识(12) 所属章节: 第9章. 软件可靠性基础知识 第3节 软件可靠性管理 为了进一步提高软件可靠性,人们又提出了软件可靠性管理的概念,把软件可…...

将ESP工作为AP路由模式并当成服务器

将ESP8266模块通过usb转串口接入电脑 ATCWMODE3 //1.配置成双模ATCIPMUX1 //2.使能多链接ATCIPSERVER1 //3.建立TCPServerATCIPSEND0,4 //4.发送4个字节在链接0通道上 >ATCIPCLOSE0 //5.断开连接通过wifi找到安信可的wifi信号并连接 连接后查看自己的ip地址变为192.168.4.…...

Python深度学习基于Tensorflow(6)神经网络基础

文章目录 使用Tensorflow解决XOR问题激活函数正向传播和反向传播解决过拟合权重正则化Dropout正则化批量正则化 BatchNormal权重初始化残差连接 选择优化算法传统梯度更新算法动量算法NAG算法AdaGrad算法RMSProp算法Adam算法如何选择优化算法 使用tf.keras构建神经网络使用Sequ…...

力扣HOT100 - 35. 搜索插入位置

解题思路&#xff1a; 二分法模板 class Solution {public int searchInsert(int[] nums, int target) {int left 0;int right nums.length - 1;while (left < right) {int mid left ((right - left) >> 1);if (nums[mid] target)return mid;else if (nums[mid…...

MinimogWP WordPress 主题下载——优雅至上,功能无限

无论你是个人博客写手、创意工作者还是企业站点的管理员&#xff0c;MinimogWP 都将成为你在 WordPress 平台上的理想之选。以其优雅、灵活和功能丰富而闻名&#xff0c;MinimogWP 不仅提供了令人惊叹的外观&#xff0c;还为你的网站带来了无限的创作和定制可能性。 无与伦比的…...

kube-prometheus部署到 k8s 集群

文章目录 **修改镜像地址****访问配置****修改 Prometheus 的 service****修改 Grafana 的 service****修改 Alertmanager 的 service****安装****Prometheus验证****Alertmanager验证****Grafana验证****卸载****Grafana显示时间问题** 或者配置ingress添加ingress访问grafana…...

从0开始学习python(六)

目录 前言 1、循环结构 1.1 遍历循环结构for 1.2 无限循环结构while 总结 前言 上一篇文章我们讲到了python的顺序结构和分支结构。这一章继续往下讲。 1、循环结构 在python中&#xff0c;循环结构分为两类&#xff0c;一类是遍历循环结构for&#xff0c;一类是无限循环结…...

OpenGL 入门(三)—— OpenGL 与 OpenCV 共同打造大眼滤镜

从本篇开始&#xff0c;会在上一篇搭建的滤镜框架的基础上&#xff0c;介绍具体的滤镜效果该如何制作。本篇会先介绍大眼滤镜&#xff0c;先来看一下效果&#xff0c;原图如下&#xff1a; 使用手机后置摄像头对眼部放大后的效果&#xff1a; 制作大眼滤镜所需的主要知识点&…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...