当前位置: 首页 > news >正文

Llama改进之——SwiGLU激活函数

引言

今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。

SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。

GLU

GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:
GLU ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) (1) \text{GLU}(x,W,V,b,c) = \sigma(xW+b) \otimes (xV+c) \tag 1 GLU(x,W,V,b,c)=σ(xW+b)(xV+c)(1)
这里 W , V W,V W,V以及 b , c b,c b,c分别是这两个线性层的参数; σ ( x W + b ) \sigma(xW+b) σ(xW+b)作为门控,控制 x V + c xV+c xV+c的输出。

这里使用 σ \sigma σ作为激活函数,修改改激活函数得到的变体通常能带来更好的性能表现,比如SwiGLU修改激活函数为Swish。我们来看下Swish激活函数。

Swish

Swish3激活函数的形式为:
Swish β ( x ) = x σ ( β x ) (2) \text{Swish}_\beta(x) = x \sigma(\beta x) \tag 2 Swishβ(x)=xσ(βx)(2)
其中 σ ( x ) \sigma(x) σ(x)是Sigmoid函数; β \beta β是一个可学习的参数。

可以通过下面的代码画出Swish激活函数在不同参数 β \beta β下的图像:

import numpy as np
import matplotlib.pyplot as pltdef swish(x, beta):return x / (1 + np.exp(-beta*x))x = np.linspace(-10, 10, 100)
betas = [0.1, 1.0, 10.0]plt.figure(figsize=(10, 6))for beta in betas:y = swish(x, beta)plt.plot(x, y, label=f'beta={beta}')plt.legend()
plt.title('Swish Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

image-20240428224729925

可以看到3,当 β \beta β趋近于 0 0 0时,Swish函数趋近于线性函数 y = x 2 y=x^2 y=x2;当 β \beta β趋近于无穷大时,Swish函数趋近于ReLU函数;当 β \beta β取值为 1 1 1时,Swish函数是光滑且非单调的,等价于参考4中介绍的SiLU。

Swish与ReLU之间最显著的区别是当 x < 0 x < 0 x<0时Swish的非单调“凸起”3

SwiGLU

如前文所述,将公式(1)中GLU的激活函数改为Swish即变成了所谓的SwiGLU激活函数1
SwiGLU ( x , W , V ) = Swish β ( x W ) ⊗ ( x V ) (3) \text{SwiGLU}(x,W,V) = \text{Swish}_\beta(xW) \otimes (xV) \tag{3} SwiGLU(x,W,V)=Swishβ(xW)(xV)(3)
这里省略了偏置项。

代码实现

参考LLaMA,全连接层使用带有SwiGLU激活函数的FFN(Position-wise Feed-Forward Network)的公式如下1
FFN SwiGLU ( x , W , V , W 2 ) = ( Swish 1 ( x W ) ⊗ x V ) W 2 (4) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{Swish}_1(\pmb xW) \otimes \pmb xV)W_2 \tag 4 FFNSwiGLU(x,W,V,W2)=(Swish1(xW)xV)W2(4)
这里的Swish函数可以被SiLU函数替代:
SiLU ( x ) = x σ ( x ) \text{SiLU}(\pmb x) = \pmb x \sigma(\pmb x) SiLU(x)=xσ(x)
即:
FFN SwiGLU ( x , W , V , W 2 ) = ( SiLU ( x W ) ⊗ x V ) W 2 (5) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{SiLU}(\pmb xW) \otimes \pmb xV)W_2 \tag 5 FFNSwiGLU(x,W,V,W2)=(SiLU(xW)xV)W2(5)

import torch
from torch import nn
import torch.nn.functional as Fclass FeedForward(nn.Module):def __init__(self, hidden_size: int, intermediate_size: int) -> None:super().__init__()self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)def forward(self, x: torch.Tensor) -> torch.Tensor:# x: (batch_size, seq_len, hidden_size)# w1(x) -> (batch_size, seq_len, intermediate_size)# w1(x) -> (batch_size, seq_len, intermediate_size)# w2(*) -> (batch_size, seq_len, hidden_size)return self.w2(F.silu(self.w1(x)) * self.w3(x))

这里w1,w2,w3分别对应公式(5)中的 W , W 2 , V W,W_2,V W,W2,V

注意维度,其中w1,w3x转换到维度intermediate_size,然后w2转换回hidden_size

参考


  1. [论文翻译]GLU Variants Improve Transformer ↩︎ ↩︎ ↩︎

  2. [论文笔记]Language Modeling with Gated Convolutional Networks ↩︎

  3. [论文笔记]SEARCHING FOR ACTIVATION FUNCTIONS ↩︎ ↩︎ ↩︎

  4. [论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS) ↩︎

相关文章:

Llama改进之——SwiGLU激活函数

引言 今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1&#xff0c;该激活函数取得了不错的效果&#xff0c;得到了广泛地应用。 SwiGLU是GLU的一种变体&#xff0c;其中包含了GLU和Swish激活函数。 GLU GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层…...

在数据分析中所需要运用到的概率论知识

数据分析 前言一、总体二、样本三、统计抽样抽取的基本准则 四、随机抽样抽签法随机数法 五、分层抽样六、整群抽样七、系统抽样八、统计参数常用的分布函数参数 九、样本统计量十、样本均值和样本方差十一、描述样本集中位置的统计量样本均值样本中位数样本众数 十二、描述样本…...

韩顺平0基础学Java——第6天

p87-p109 运算符&#xff08;第四章&#xff09; 四种进制 二进制用0b或0B开头 十进制略 八进制用0开头 十六进制0x或0X开头&#xff0c;其中的A—F不区分大小写 10转2&#xff1a;将这个数不断除以2&#xff0c;直到商为0&#xff0c;然后把每步得到的余数倒过来&#…...

react18子组件设置接收默认值和值类型验证

父组件传值 import ChildCom from ./components/ChildCom export default function Person {return(<div><ChildCom name"alan-ben" age{18} score{[98, 97, 100]} /></div>) } 子组件接收并验证类型 import React from react import PropTypes…...

Java 高级面试问题及答案(二)

Java高级面试问题及答案 1. 在Java中&#xff0c;什么是强引用、软引用、弱引用和虚引用&#xff0c;它们有什么区别&#xff1f; 答案&#xff1a; 在Java中&#xff0c;引用类型决定了对象的生命周期&#xff0c;主要有以下四种&#xff1a; 强引用&#xff1a;最常见的引…...

数据统计:词频统计、词表生成、排序及计数、词云图生成

文章目录 &#x1f4da;输入及输出&#x1f4da;代码实现 &#x1f4da;输入及输出 输入&#xff1a;读取一个input.txt&#xff0c;其中包含单词及其对应的TED打卡号。 输出 output.txt&#xff1a;包含按频率降序排列的每个单词及其计数&#xff08;这里直接用于后续的词云…...

W801学习笔记二十四:NES模拟器游戏

之前已经实现了NES模拟器玩游戏。W801学习笔记九&#xff1a;HLK-W801制作学习机/NES游戏机(模拟器) 现在要在新版本掌机中移植过来。 1、把NES文件都拷贝到SD卡中。 这回不会受内存大小限制了。我这里拷贝了4个&#xff0c;还可以拷贝更多。 2、应用初始化中&#xff0c;加载…...

ECMAScript 6简介

ECMAScript 6简介 发布日期目标ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 ESx标准 命名规则 ECMAScript 的历史 1. ECMAScript 6简介 1.1. 发布日期 ECMAScript 6.0&#xff08;以下简称 ES6&#xff09;是 JavaScript 语言的下一代标准&#xff0c;已…...

第1个数据库:编号,文本,时间,

写一个数据库 编号 文本 时间1 第一个文本 有100万条数据 -- 创建一个名为texts的表格来存储数据 CREATE TABLE texts ( id INTEGER PRIMARY KEY, text TEXT, time TIMESTAMP DEFAULT CURRENT_TIMESTAMP);-- 插入数据INSERT INTO texts (text) VALUES (第一个文…...

线性数据结构-手写链表-LinkList

为什么需要手写实现数据结构&#xff1f; 其实技术的本身就是基础的积累和搭建的过程&#xff0c;基础扎实 地基平稳 万丈高楼才会久战不衰&#xff0c;做技术能一通百&#xff0c;百通千就不怕有再难得技术了。 一&#xff1a;链表的分类 主要有单向&#xff0c;双向和循环链表…...

快手客户端一二面+美团前端一面+腾讯企业微信开发客户端一面

快手一面结志 1、自我介绍 2、对称加密非对称加密 3、TCP/UDP 4、在学校有什么课程是强项&#xff0c;说了过去几次面试中面到的C的语言基础知识 5、问C、Java中兴趣在哪里 6、问到项目&#xff0c;自己做的还是跟着学校老师做的&#xff0c;同样问到兴趣在哪里 7、LRU …...

探索数据结构

什么是数据结构 数据结构是由&#xff1a;“数据”与“结构”两部分组成 数据与结构 数据&#xff1a;如我们所看见的广告、图片、视频等&#xff0c;常见的数值&#xff0c;教务系统里的&#xff08;姓名、性别、学号、学历等等&#xff09;&#xff1b; 结构&#xff1a;当…...

VMware虚拟机中ubuntu使用记录(6)—— 如何标定单目相机的内参(张正友标定法)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、张正友相机标定法1. 工具的准备2. 标定的步骤(1) 启动相机(2) 启动标定程序(3) 标定过程的操作(5)可能的报错 3. 标定文件内容解析 前言 张正友相机标定法…...

每日OJ题_记忆化搜索②_力扣62. 不同路径(三种解法)

目录 力扣62. 不同路径 解析代码1_暴搜递归&#xff08;超时&#xff09; 解析代码2_记忆化搜索 解析代码3_动态规划 力扣62. 不同路径 62. 不同路径 难度 中等 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器…...

【微信小程序开发】微信小程序、大前端之flex布局方式详细解析

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

代码随想录算法训练营第二十天:二叉树成长

代码随想录算法训练营第二十天&#xff1a;二叉树成长 110.平衡二叉树 力扣题目链接(opens new window) 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a;一个二叉树每个节点 的左右两个子树的高度差的绝…...

Opensbi初始化分析:设备初始化-warmboot

Opensbi初始化分析:设备初始化-warmboot 设备初始化sbi_init函数init_warmboot函数coolboot & warmbootwait_for_coldboot函数domain && scratch(coldboot所特有)console初始化及print相关工作(coldboot所特有)系统调用的相关初始化(coldboot所特有)综上设备…...

软考 系统架构设计师系列知识点之软件可靠性基础知识(13)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件可靠性基础知识&#xff08;12&#xff09; 所属章节&#xff1a; 第9章. 软件可靠性基础知识 第3节 软件可靠性管理 为了进一步提高软件可靠性&#xff0c;人们又提出了软件可靠性管理的概念&#xff0c;把软件可…...

将ESP工作为AP路由模式并当成服务器

将ESP8266模块通过usb转串口接入电脑 ATCWMODE3 //1.配置成双模ATCIPMUX1 //2.使能多链接ATCIPSERVER1 //3.建立TCPServerATCIPSEND0,4 //4.发送4个字节在链接0通道上 >ATCIPCLOSE0 //5.断开连接通过wifi找到安信可的wifi信号并连接 连接后查看自己的ip地址变为192.168.4.…...

Python深度学习基于Tensorflow(6)神经网络基础

文章目录 使用Tensorflow解决XOR问题激活函数正向传播和反向传播解决过拟合权重正则化Dropout正则化批量正则化 BatchNormal权重初始化残差连接 选择优化算法传统梯度更新算法动量算法NAG算法AdaGrad算法RMSProp算法Adam算法如何选择优化算法 使用tf.keras构建神经网络使用Sequ…...

力扣HOT100 - 35. 搜索插入位置

解题思路&#xff1a; 二分法模板 class Solution {public int searchInsert(int[] nums, int target) {int left 0;int right nums.length - 1;while (left < right) {int mid left ((right - left) >> 1);if (nums[mid] target)return mid;else if (nums[mid…...

MinimogWP WordPress 主题下载——优雅至上,功能无限

无论你是个人博客写手、创意工作者还是企业站点的管理员&#xff0c;MinimogWP 都将成为你在 WordPress 平台上的理想之选。以其优雅、灵活和功能丰富而闻名&#xff0c;MinimogWP 不仅提供了令人惊叹的外观&#xff0c;还为你的网站带来了无限的创作和定制可能性。 无与伦比的…...

kube-prometheus部署到 k8s 集群

文章目录 **修改镜像地址****访问配置****修改 Prometheus 的 service****修改 Grafana 的 service****修改 Alertmanager 的 service****安装****Prometheus验证****Alertmanager验证****Grafana验证****卸载****Grafana显示时间问题** 或者配置ingress添加ingress访问grafana…...

从0开始学习python(六)

目录 前言 1、循环结构 1.1 遍历循环结构for 1.2 无限循环结构while 总结 前言 上一篇文章我们讲到了python的顺序结构和分支结构。这一章继续往下讲。 1、循环结构 在python中&#xff0c;循环结构分为两类&#xff0c;一类是遍历循环结构for&#xff0c;一类是无限循环结…...

OpenGL 入门(三)—— OpenGL 与 OpenCV 共同打造大眼滤镜

从本篇开始&#xff0c;会在上一篇搭建的滤镜框架的基础上&#xff0c;介绍具体的滤镜效果该如何制作。本篇会先介绍大眼滤镜&#xff0c;先来看一下效果&#xff0c;原图如下&#xff1a; 使用手机后置摄像头对眼部放大后的效果&#xff1a; 制作大眼滤镜所需的主要知识点&…...

Linux服务器安全基础 - 查看入侵痕迹

1. 常见系统日志 /var/log/cron 记录了系统定时任务相关的日志 /var/log/dmesg 记录了系统在开机时内核自检的信息&#xff0c;也可以使用dmesg命令直接查看内核自检信息 /var/log/secure:记录登录系统存取数据的文件;例如:pop3,ssh,telnet,ftp等都会记录在此. /var/log/btmp:记…...

Java反射机制的实战应用:探索其魅力与局限

引言 Java作为一种面向对象的编程语言&#xff0c;其灵活性和强大的功能使其成为众多开发者的首选。而Java反射机制作为Java语言中的一项重要特性&#xff0c;为程序员提供了一种在运行时检查和操作类、方法、属性等信息的能力。本文旨在深入探讨Java反射机制的实战应用&#…...

vue3项目 文件组成

从头捋顺一遍vue3项目文件目录 前置知识JS模块化什么是依赖&#xff1f;安装依赖webpack能做什么&#xff1f;vue基本使用 不借助vue-cli&#xff0c;从0开始搭建vue项目。index.html、main.js、App.vue引入npm引入webpack引入babel引入vue-loaderwebpack配置webpack配置 前置知…...

C语言关键字 typedef 的功能是什么?

一、问题 语⾔有 32 个关键字&#xff0c;其中 int 的功能是声明整型变量&#xff0c;struct 的功能是声明结构体变量&#xff0c;那么 typedef 的功能是什么呢&#xff1f; 二、解答 1. typedef 的功能 在 C 语⾔中除了可以使⽤标准类型名&#xff08;如 int、 char、float …...

【YoloDeployCsharp】基于.NET Framework的YOLO深度学习模型部署测试平台-源码下载与项目配置

基于.NET Framework 4.8 开发的深度学习模型部署测试平台,提供了YOLO框架的主流系列模型,包括YOLOv8~v9,以及其系列下的Det、Seg、Pose、Obb、Cls等应用场景,同时支持图像与视频检测。模型部署引擎使用的是OpenVINO™、TensorRT、ONNX runtime以及OpenCV DNN,支持CPU、IGP…...

Javaweb网站建设/百度广告联盟

管理节点 docker swarm leave --force普通节点 docker swarm leave欢迎小伙伴讨论&#xff0c;如有错误请在评论区评论或发私聊消息&#xff0c;谢谢你。...

企业网站建设参考文献/中国疾控卫生应急服装

需要统计的事项&#xff1a; UV每次访问都要把用户的ip&#xff08;不管该用户有无登录&#xff09;存到某个数据结构里&#xff0c;方便进行统计 DAU只统计登录的用户&#xff08;根据用户id&#xff09;&#xff0c;对于那些没有登录的游客不进行统计。1表示访问过&#x…...

010-58813333 可信网站/合肥网络公司seo建站

今天楼主给大家讲一下在校学生都关心的问题&#xff0c;在学校的时候如何才能学好Java技术&#xff0c;并且在毕业之前有能力胜任软件公司的工作。 如果你是在校的学生&#xff0c;或许还不知道如今社会中工作的竞争也多大&#xff0c;目前这个时代来讲&#xff0c;大学生毕业…...

贵阳专业做网站的公司/市场营销策划方案3000字

科目编号&#xff1a;8638 座位号 2017-2018学年度第二学期期末考试 薪酬制度与薪酬管理 试题 2018年 7 月 一、单选题&#xff08;本大题共10小题&#xff0c;每小题3分&#xff0c;共计30分&#xff09; &#xff08;★请考生务必将答案填入到下面对应序号的答题框中★&…...

vs2010网站制作教程/排行榜哪个网站最好

这里写目录标题1. 相关符号2. 基本知识 【同时行动博弈&#xff0c;或标准博弈】2.1 定义2.2 策略博弈表示2.3 最优反应策略2.3.1 最优反应策略定义3. 策略型博弈案例3.1 案例一3.2 案例二3.3 案例三3.4 案例四3.5 案例五3.6 案例六3.7 案例七3.8 案例八3.9 案例九参考1. 相关符…...

网站建设的原则/百度应用下载

./configure 参数详解 --prefixPREFIX 把所有文件装在目录 PREFIX下面而不是 /usr/local/pgsql 里&#xff0e;实际的文件会安装到不同的子目录里&#xff1b;甚至没有一个文件会直接 安装到 PREFIX 目录里&#xff0e; 如果你有特殊需要&#x…...