当前位置: 首页 > news >正文

数据结构复习指导之外部排序

目录

外部排序

复习提示

1.外部排序的基本概念

2.外部排序的方法

2.1对大文件排序时使用的排序算法(2016)

3.多路平衡归并与败者树

4.置换-选择排序(生成初始归并段)

4.1置换-选择排序生成初始归并段的实例(2023)

5.最佳归并树

5.1构造三叉哈夫曼树及相关的分析和计算(2013)

5.2实现最佳归并时需补充的虚段数量的分析(2019)

知识回顾


外部排序

复习提示

外部排序可能会考查相关概念、方法和排序过程,外部排序的算法比较复杂,不会在算法设计上进行考查。

本节的主要内容有:

① 外部排序指的是大文件的排序,即待排序的记录存储在外存中,待排序的文件无法一次性装入内存,需要在内存和外存之间进行多次数据交换,以达到排序整个文件的目的。

② 为减少平衡归并中外存读/写次数所采取的方法:增大归并路数和减少归并段个数。

③ 利用败者树增大归并路数。

④ 利用置换-选择排序增大归并段长度来减少归并段个数。

⑤ 由长度不等的归并段进行多路平衡归并,需要构造最佳归并树。

1.外部排序的基本概念

前面介绍过的排序算法都是在内存中进行的(称为内部排序)。

而在许多应用中,经常需要对大文件进行排序,因为文件中的记录很多,无法将整个文件复制进内存中进行排序。

因此,需要将待排序的记录存储在外存上,排序时再把数据一部分一部分地调入内存进行排序,在排序过程中需要多次进行内存和外存之间的交换。

这种排序算法就称为外部排序

2.外部排序的方法

文件通常是按块存储在磁盘上的,操作系统也是按块对磁盘上的信息进行读/写的。

因为磁盘读/写的机械动作所需的时间远远超过在内存中进行运算的时间(相比而言可以忽略不计),

因此在外部排序过程中的时间代价主要考虑访问磁盘的次数,即I/O次数。

2.1对大文件排序时使用的排序算法(2016)

外部排序通常采用归并排序算法。它包括两个阶段:

  • ① 根据内存缓冲区大小,将外存上的文件分成若干长度为 L 的子文件,依次读入内存并利用内部排序算法对它们进行排序,并将排序后得到的有序子文件重新写回外存,称这些有序子文件为归并段或顺串
  • ② 对这些归并段进行逐趟归并,使归并段(有序子文件)逐渐由小到大,直至得到整个有序文件为止。

例如,一个含有 2000个记录的文件,每个磁盘块可容纳 125 个记录,首先通过8次内部排序得到 8个初始归并段 R1~R8,每段都含 250 条记录。

然后对该文件做如图 8.15 所示的两两归并,直至得到一个有序文件。

可以把内存工作区等分为三个缓冲区,如图8.14所示,其中的两个为输入缓冲区,一个为输出缓冲区。

首先,从两个输入归并段R1和 R2 中分别读入一个块,放在输入缓冲区1和输入缓冲区2中。

然后,在内存中进行二路归并,归并后的对象顺序存放在输出缓冲区中。

若输出缓冲区中对象存满,则将其顺序写到输出归并段(R1')中,再清空输出缓冲区,继续存放归并后的对象。

若某个输入缓冲区中的对象取空,则从对应的输入归并段中再读取下一块,继续参加归并。

如此继续,直到两个输入归并段中的对象全部读入内存并都归并完成为止。

当 R1 和 R2 归并完后,再归并 R3 和 R4、R5 和 R6、最后归并 R7和 R8,这是一趟归并。

再把上趟的结果 R1'和 R2'、R3'和 R4'两两归并,这又是一趟归并。

最后把 R1"和 R2"两个归并段归并,得到最终的有序文件,一共进行了3趟归并。

在外部排序中实现两两归并时,由于不可能将两个有序段及归并结果段同时存放在内存中,因此需要不停地将数据读出、写入磁盘,而这会耗费大量的时间。

一般情况下:

                                        外部排序的总时间 = 内部排序的时间 + 外存信息读/写的时间 + 内部归并的时间

显然,外存信息读/写的时间远大于内部排序和内部归并的时间,因此应着力减少 I/O 次数。

由于外存信息的读/写是以“磁盘块”为单位的,因此可知每趟归并需进行 16 次读和 16 次写,3趟归并加上内部排序时所需进行的读/写,使得总共需进行 32x3 +32=128 次读/写。

若改用 4 路归并排序,则只需2趟归并,外部排序时的总读/写次数便减至 32x2+32=96。

因此,增大归并路数,可减少归并趟数,进而减少总的磁盘 I/O 次数,如图 8.16 所示。

一般地,对 r 个初始归并段,做 k 路平衡归并(即每趟将 k 个或 k 个以下的有序子文件归并成一个有序子文件)。

第一趟可将 r 个初始归并段归并为\left \lceil r/k \right \rceil个归并段,以后每趟归并将 m 个归并段归并成\left \lceil m/k \right \rceil个归并段,直至最后形成一个大的归并段为止。

                                                                        树的高度-1=\left \lceil log_kr \right \rceil= 归并趟数S。

可见,只要增大归并路数k,或减少初始归并段个数r,都能减少归并趟数 S,进而减少读/写磁盘的次数,达到提高外部排序速度的目的

 

3.多路平衡归并与败者树

增加归并路数 k 能减少归并趟数 S,进而减少 I/O 次数。

然而,增加归并路数 k 时,内部归并的时间将增加。

做内部归并时,在 k 个元素中选择关键字最小的元素需要k-1次比较。

每趟归并 n 个元素需要做 (n-1)(k-1) 次比较,S趟归并总共需要的比较次数为

                S(n-1)(k-1)=\left \lceil log_kr \right \rceil(n-1)(k-1)=\left \lceil log_2r \right \rceil(n-1)(k-1)/\left \lceil log_2k \right \rceil

式中,(k-1)/\left \lceil log_2k \right \rceil随 k 增长而增长,因此内部归并时间亦随 k 的增长而增长。

这将抵消因增大 k 而减少外存访问次数所得到的效益。因此,不能使用普通的内部归并排序算法。

为了使内部归并不受 k 的增大的影响,引入了败者树

败者树是树形选择排序的一种变体,可视为一棵完全二叉树

k 个叶结点分别存放 k 个归并段在归并过程中当前参加比较的元素,内部结点用来记忆左右子树中的“失败者”,而让胜利者往上继续进行比较,一直到根结点。

若比较两个数,大的为失败者、小的为胜利者,则根结点指向的数为最小数。

如图 8.17(a) 所示,

  • b3 与 b4 比较,b4 是败者,将段号 4 写入父结点 ls[4](l为小写的L,并非大写的i,下面同理)。
  • b1 与 b2 比较,b2 是败者,将段号 2 写入 ls[3]。
  • b3 与 b4的胜者 b3 与 b0 比较,b0 是败者,,将段号0写入 Is[2]。
  • 最后两个胜者 b3 与 b1 比较,b1是败者,将段号1写入Is[1]。
  • 而将胜者b3 的段号3写入 ls[0] 此时,根结点 Is[0] 所指的段的关键字最小。

对于k路归并,初始构造败者树需要k-1次比较。

b3 中的 6 输出后,将下一关键字填入 b3,继续比较。

因为 k 路归并的败者树深度为\left \lceil log_2k \right \rceil+1,所以从 k 个记录中选择最小关键字,仅需进行\left \lceil log_2k \right \rceil次比较。

因此总的比较次数约为

                        ​​​​​​​        ​​​​​​​        S(n-1)\left \lceil log_2k \right \rceil=\left \lceil log_kr \right \rceil(n-1)\left \lceil log_2k \right \rceil=(n-1)\left \lceil log_2r \right \rceil

可见,使用败者树后,内部归并的比较次数与 k 无关了。

因此,只要内存空间允许,增大归并路数 k 将有效地减少归并树的高度,从而减少 I/O 次数,提高外部排序的速度。

值得说明的是,归并路数 k 并不是越大越好。

归并路数 k 增大时,相应地需要增加输入缓冲区的个数。

若可供使用的内存空间不变,势必要减少每个输入缓冲区的容量,使得内存、外存交换数据的次数增大。

当k值过大时,虽然归并趟数会减少,但读/写外存的次数仍会增加。

4.置换-选择排序(生成初始归并段)

从 《外部排序的方法》节的讨论可知,减少初始归并段个数,也可以减少归并趟数 S。

若总的记录个数为n,每个归并段的长度为 l(此l为小写的L,并非大写的i),则归并段的个数r=\left \lceil n/l \right \rceil

采用内部排序算法得到的各个初始归并段长度都相同(除最后一段外),它依赖于内部排序时可用内存工作区的大小。

因此,必须探索新的方法,用来产生更长的初始归并段,这就是本节要介绍的置换-选择算法

4.1置换-选择排序生成初始归并段的实例(2023)

设初始待排文件为FI(此I为大写的i,非小写的L),初始归并段输出文件为FO,内存工作区为 WA,FO 和 WA 的初始状态为空,WA可容纳 w 个记录。

置换-选择算法的步骤如下:

1) 从 FI 输入 w 个记录到工作区 WA。

2) 从 WA 中选出其中关键字取最小值的记录,记为 MINIMAX 记录。

3) 将 MINIMAX 记录输出到 FO 中去。

4) 若 FI 不空,则从 FI 输入下一个记录到 WA 中。

5) 从 WA 中所有关键字比 MINIMAX 记录的关键字大的记录中选出最小关键字记录,作为新的 MINIMAX 记录。

6) 重复 3)~5),直至在 WA 中选不出新的 MINIMAX 记录为止,由此得到一个初始归并段,输出一个归并段的结束标志到FO中去。

7) 重复 2)~6),直至 WA 为空。由此得到全部初始归并段。

设待排文件 FI={17,21,05,44,10,12,56,32,29},WA 容量为3,排序过程如表 8.2 所示。

上述算法,在 WA 中选择 MINIMAX记录的过程需利用败者树来实现。

5.最佳归并树

文件经过置换-选择排序后,得到的是长度不等的初始归并段。

下面讨论如何组织长度不等的初始归并段的归并顺序,使得 I/O 次数最少。

假设由置换-选择排序得到 9个初始归并段,其长度(记录数)依次为9,30,12,18,3,17,2,6,24。

现做 3 路平衡归并,其归并树如图 8.18 所示。

在图 8.18中,各叶结点表示一个初始归并段,上面的权值表示该归并段的长度,叶结点到根的路径长度表示其参加归并的趟数,各非叶结点代表归并成的新归并段,根结点表示最终生成的归并段。

树的带权路径长度 WPL为归并过程中的总读记录数,所以I/O 次数=2xWPL=484。

5.1构造三叉哈夫曼树及相关的分析和计算(2013)

显然,归并方案不同,所得归并树不同,树的带权路径长度(I/O次数)亦不同。

为了优化归并树的 WPL,可以将哈夫曼树的思想推广到 m 又树的情形,在归并树中,让记录数少的初始归并段最先归并,记录数多的初始归并段最晚归并,就可以建立总的 I/O 次数最少的最佳归并树

上述 9 个初始归并段可构造成一棵如图 8.19 所示的归并树,按此树进行归并,仅需对外存进行446 次读/写,这棵归并树便称为最佳归并树。

图 8.19 中的哈夫曼树是一棵严格 3 叉树,即树中只有度为 3 或 0 的结点。

若只有8个初始归并段,如上例中少了一个长度为 30 的归并段。

若在设计归并方案时,缺额的归并段留在最后,即除最后一次做二路归并外,其他各次归并仍是 3 路归并,此归并方案的 I/O 次数为 386。

显然这不是最佳方案。

正确的做法是:若初始归并段不足以构成一棵严格 k 叉树(也称正则 k 叉树)时,需添加长度为 0的“虚段”,按照哈夫曼树的原则,权为0的叶子应离树根最远。

因此,最佳归并树应如图 8.20 所示,此时的 I/O 次数仅为 326。

如何判定添加虚段的数目?

设度为 0 的结点有n_0个,度为k的结点有n_k个,归并树的结点总数为n,则有:

  • n=n_k+n_0        (总结点数 = 度为k的结点数 +度为 0 的结点数)
  • n=kn_k+1        (总结点数 = 所有结点的度数之和+1)

因此,对严格 k 叉树有n_0=(k-1)n_k+1,由此可得n_k=(n_0-1)/(k-1)

若(n0-1)%(k-1)=0(%为取余运算),则说明这n0个叶结点(初始归并段)正好可以构造 k 叉归并树。此时,内结点有n_k个。

若(n0-1)%(k-1)=u≠0,则说明对于这 n0个叶结点,其中有u个多余,不能包含在 k叉归并树中。

为构造包含所有 n0 个初始归并段的 k 叉归并树,应在原有 n_k个内结点的基础上再增加 1 个内结点。

它在归并树中代替了一个叶结点的位置,被代替的叶结点加上刚才多出的 u 个叶结点,即再加上k-u-1个空归并段,就可以建立归并树。

5.2实现最佳归并时需补充的虚段数量的分析(2019)

以图 8.19 为例,用 8 个归并段构成 3 叉树,(n0-1)%(k-1)=(8-1)%(3-1)=1,说明7个归并段刚好可以构成一棵严格 3叉树(假设把以5为根的树视为一个叶子)。

为此,将叶子5变成一个内结点,再添加 3-1-1=1个空归并段,就可以构成一棵严格3叉树。

知识回顾

 

相关文章:

数据结构复习指导之外部排序

目录 外部排序 复习提示 1.外部排序的基本概念 2.外部排序的方法 2.1对大文件排序时使用的排序算法(2016) 3.多路平衡归并与败者树 4.置换-选择排序(生成初始归并段) 4.1置换-选择排序生成初始归并段的实例(2023) 5.最佳…...

【Python报错】已解决TypeError: can only concatenate str (not “int“) to str

解决Python报错:TypeError: can only concatenate str (not “int”) to str 在Python中,字符串连接是常见的操作,但如果你尝试将整数(int)与字符串(str)直接连接,会遇到TypeError: …...

Log4j日志级别介绍

Log4j 是一个广泛使用的 Java 日志记录框架,提供了多种日志级别,用于控制日志输出的详细程度。每个日志级别代表一种特定的重要性和紧急程度。 以下是 Log4j 的常见日志级别及其解读: FATAL(致命) 解释:表…...

[MQTT]服务器EMQX搭建SSL/TLS连接过程(wss://)

👉原文阅读 💡章前提示 本文采用8084端口进行连接,是EMQX 默认提供了四个常用的监听器之一,如果需要添加其他类型的监听器,可参考官方文档🔗管理 | EMQX 文档。 本文使用自签名CA,需要提前在L…...

【纯血鸿蒙】——响应式布局如何实现?

前面介绍了自适应布局,但是将窗口尺寸变化较大时,仅仅依靠自适应布局可能出现图片异常放大或页面内容稀疏、留白过多等问题。此时就需要借助响应式布局能力调整页面结构。 响应式布局 响应式布局是指页面内的元素可以根据特定的特征(如窗口…...

深入理解Django Serializer及其在Go语言中的实现20240604

深入理解Django Serializer及其在Go语言中的实现 在现代Web开发中,前后端分离已成为主流架构模式。作为开发者,我们经常需要处理数据的序列化和反序列化,以便在前后端之间传递数据。在Django中,Serializer是一个强大的工具&#…...

电子纸在日化行业的全新应用

电子纸在日化行业的全新应用 项目背景 在一日化龙头企业他们的洗衣粉产线在AGV小车取料到运输到产品包装工序时,因为取料粉车无明显区分标识,但是产品系列有十大类。在未采用晨控电子纸之前现场采用一个转盘分为十个区域,取料工序上方会有一…...

【Redis】Redis的双写问题

在分布式系统中,双写问题通常是指数据在多个存储系统(例如数据库和缓存)中更新时出现的不一致性。这种问题在使用 Redis 作为缓存层时尤为常见。具体来说,当数据在数据库和 Redis 缓存中存在副本时,任何对数据的更新操…...

生气时,你的“心”会发生什么变化?孟德尔随机化分析猛如虎,结果都是套路...

“不生气不生气,气出病来无人替”,不少人遇事常这样宽慰自己。事实上,“气死”真不是危言耸听。越来越多的研究证明了情绪稳定对健康的重要性,那么,当情绪频繁波动时,我们的心血管究竟会发生什么变化&#…...

页面加载性能分析时,有哪些常见的性能瓶颈需要特别注意?

在进行页面加载性能分析时,以下是一些常见的性能瓶颈,需要特别注意: 长页面加载时间: 页面加载时间超过行业标准或用户期望,导致用户流失。 高 CPU 使用率: 某些脚本或操作导致 CPU 使用率飙升,…...

Scanner

Java 有一个 Scanner 类,用这个类可以接受键盘输入。 步骤: 导入该类所在的包(要使用一个类的话就必须先导入该类所在的包)创建该类的对象调用里面的功能 Scanner 有两套系统。 第一套系统: nextInt(); nextDoubl…...

vue3实现录音与录像上传功能

录音 <script setup lang"ts"> import { onMounted, reactive, ref } from vue; import useInject from /utils/useInject;const props: any defineProps<{params?: any; }>();const recObj: any reactive({blob: null, });const { $global, $fn } …...

PHP小方法

一、随机生成姓名 二、随机获取身份证 三、随机获取手机号 四、随机获取省 五、通过身份证获取生日和性别 六、通过身份证获取年龄 七、获取访问IP 八、获取访问URL地址 九、陆续增加 //一、随机生成姓名 function generateName(){$arrXing getXingList();$numbXing …...

gulimall-search P125 springboot整合elasticsearch版本冲突

一、问题 spring-boot.version 2.2.4.RELEASE,在gulimall-search pom.xml中添加elasticsearch.version 7.4.2后&#xff0c;发现出现如下问题&#xff1a;elasticsearch版本是springboot引入的6.8.6&#xff0c;没有变为7.4.2。 二、原因 在gulimall-search 的pom文件中&#…...

如何在Coze中实现Bot对工作流的精准调用(如何提高Coze工作流调用的准确性和成功率)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 工作流(workflow)📒📝 创建设计工作流📝 添加工作流📝 调用工作流⚓️ 相关链接 ⚓️📖 介绍 📖 在使用Coze平台创建智能Bot时,您可能会遇到一个常见问题:即便添加了正确的工作流,Bot却没有按照预期调用它们。…...

毫米波雷达阵列天线设计综合1(MATLAB仿真)

1 天线设计目标 毫米波雷达探测目标的距离、速度和角度&#xff0c;其中距离和角度和天线设计相关性较强。天线增益越高&#xff0c;则根据雷达方程可知探测距离越远&#xff1b;天线波束越窄&#xff0c;则角度分辨率越高&#xff1b;天线副瓣/旁瓣越低&#xff0c;则干扰越少…...

Freemarker

Freemarker简介 Freemarker是一个用Java语言编写的模板引擎&#xff0c;用于基于模板和数据生成文本输出。它可以用于生成HTML网页、XML文档、电子邮件、配置文件等任何格式的文本。Freemarker将业务逻辑与表示逻辑分离&#xff0c;使得开发人员可以专注于功能实现&#xff0c…...

基于Zero-shot实现LLM信息抽取

基于Zero-shot方式实现LLM信息抽取 在当今这个信息爆炸的时代&#xff0c;从海量的文本数据中高效地抽取关键信息显得尤为重要。随着自然语言处理&#xff08;NLP&#xff09;技术的不断进步&#xff0c;信息抽取任务也迎来了新的突破。近年来&#xff0c;基于Zero-shot&#x…...

【python】tkinter GUI编程经典用法,Label标签组件应用实战详解

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

国产操作系统上给麒麟虚拟机安装virtualbox增强工具 _ 统信 _ 麒麟 _ 中科方德

原文链接&#xff1a;国产操作系统上给麒麟虚拟机安装virtualbox增强工具 | 统信 | 麒麟 | 中科方德 Hello&#xff0c;大家好啊&#xff01;昨天给大家带来了一篇在国产操作系统上给VirtualBox中的Win7虚拟机安装增强工具的文章&#xff0c;今天我们将继续深入&#xff0c;介绍…...

(delphi11最新学习资料) Object Pascal 学习笔记---第14章泛型第3节(特定类约束)

14.3.2 特定类约束 ​ 如果您的泛型类需要使用某个特定子集的类&#xff08;特定层次结构&#xff09;&#xff0c;则可能需要根据给定基类指定约束。 ​ 例如&#xff0c;如果您声明&#xff1a; typeTCompClass<T: TComponent> class​ 则此泛型类的实例仅适用于组…...

【postgresql初级使用】视图上的触发器instead of,替代计划的rewrite,实现不一样的审计日志

instead of 触发器 ​专栏内容&#xff1a; postgresql使用入门基础手写数据库toadb并发编程 个人主页&#xff1a;我的主页 管理社区&#xff1a;开源数据库 座右铭&#xff1a;天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物. 文章目录 inst…...

window.setInterval(func,interval)定时器

window.setInterval()是JavaScript中的方法&#xff0c;用于在指定的时间间隔重复执行某个函数或代码块。它接受两个参数&#xff0c;第一个参数是要执行的函数或代码块&#xff0c;第二个参数是时间间隔&#xff08;以毫秒为单位&#xff09;。 以下是使用window.setInterval…...

Einstein Summation 爱因斯坦求和 torch.einsum

Einstein Summation 爱因斯坦求和 torch.einsum flyfish 理解爱因斯坦求和的基本概念和语法&#xff0c;这对初学者来说可能有一定难度。对于不熟悉该表示法的用户来说&#xff0c;可能不如直接的矩阵乘法表达式易于理解。 整个思路是 向量的点积 -》矩阵乘法-》einsum 向…...

TCP攻击是怎么实现的,如何防御?

TCP&#xff08;Transmission Control Protocol&#xff09;是互联网协议族中的重要组成部分&#xff0c;用于在不可靠的网络上提供可靠的数据传输服务。然而&#xff0c;TCP协议的一些特性也使其成为攻击者的目标&#xff0c;尤其是DDoS&#xff08;Distributed Denial of Ser…...

Chrome DevTools开发者调试工具

Chrome DevTools 是一个功能强大的网页开发工具&#xff0c;集成在谷歌浏览器中&#xff0c;帮助开发者调试和优化网页应用。以下是详细的功能说明和使用技巧&#xff1a; 1. 打开 DevTools 快捷键&#xff1a;按下 F12 或 CtrlShiftI&#xff08;Windows/Linux&#xff09;或…...

产品创新管理:从模仿到引领,中国企业的创新之路

一、引言 在全球化竞争日益激烈的今天&#xff0c;科技创新已成为推动国家经济增长和社会进步的关键动力。中国自改革开放四十年来&#xff0c;在科技创新领域取得了举世瞩目的成就&#xff0c;从跟踪模仿到自主研发&#xff0c;再到自主创新、开放创新和协同创新并举&#xf…...

Android 日志实时输出

开发中如果只是单纯的应用开发&#xff0c;Android studio基本上可以满足&#xff0c;但是如果应用和系统联调那就得用logcat实时输出了&#xff0c;我这里都是总结的实用经验&#xff0c;没那么多花里胡哨 Android 日志实时输出 1、输出 android log //分步&#xff0c;进入s…...

JavaEE初阶---多线程编程(一.线程与进程)

目录 &#x1f923;一.线程与进程的概念与联系&#xff1a; 进程的基本概念&#xff1a; 线程的基本概念&#xff1a; 进程和线程的区别与联系&#xff1a; &#x1f643;代码执行实列&#xff1a; 1.通过继承Thread父类来实现多线程 2.通过实现Runnable接口来实现多线程…...

react+vite创建

要在本地初始化一个结合了React和Vite的项目&#xff0c;你可以遵循以下步骤&#xff1a; 1、安装Node.js&#xff1a; 确保你的机器上已安装了Node.js。如果未安装&#xff0c;请前往Node.js官网下载并安装。 2、使用终端或命令提示符&#xff1a; 打开你的终端&#xff08;…...

织梦网站上传的文章只显示摘要不显示内容如何修改/网站性能优化的方法有哪些

Python提供了众多的PDF支持库&#xff0c;本文是在Python3环境下&#xff0c;试用了两个库来完成PDF的生成的功能。PyPDF对于读取PDF支持较好&#xff0c;但是没找到生成多层PDF的方法。Reportlab看起来更成熟&#xff0c;能够利用Canvas很方便的生成多层PDF&#xff0c;这样就…...

专门做国外家具书籍的网站/百度网站排名优化

育软件、程序设计软件、网络软件、工具软件。(三)Word文字处理【教学目的与要求】1、通过本部分的学习&#xff0c;了解Word窗口的组成部分&#xff1b;了解在Word中插入与编辑公式的方法&#xff1b;2、理解Word文字排版中的常见概念&#xff1b;理解word中表格的行、列、单元…...

石家庄网站建设成功案例/如何去除痘痘效果好

环境说明 系统版本&#xff1a;CentOS 7.6软件版本&#xff1a;Nginx 1.15.9 我们在Nginx社区网站找到下载页面&#xff0c;选择目前最新的Nginx稳定版1.15.9进行下载&#xff0c;然后通过源码的方式进行编译及安装。 安装配置 编译前环境所需的命令及依赖库安装yum -y install…...

wordpress 报表图形/百度热门关键词

最大报销额 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 22659 Accepted Submission(s): 6892 Problem Description 现有一笔经费可以报销一定额度的发票。允许报销的发票类型包括买图书&#xff08;A类&…...

商城移动端网站开发/东莞网站推广大全

引子 今年开始&#xff0c;我在翻译一本大部头的&#xff0c;比较经典的的Python进阶书籍。 有空就翻译几页。这本书不仅是教你很多进阶的Python的语法&#xff0c;更重要的是讲解很多设计方法和设计思想。 这些方法和思想&#xff0c;一点点叠加起来&#xff0c;就会让你从…...

网站建设的电话/安徽网站关键字优化

refs: http://blog.csdn.net/leftfist/article/details/41747255?utm_sourcetuicool WPF中&#xff0c;代码中准备控制控件内容时&#xff0c;有时会报错&#xff1a; 调用线程必须为 STA,因为许多 UI 组件都需要 我知道&#xff0c;在winform下面&#xff0c;使用多线程时…...