当前位置: 首页 > news >正文

昇思MindSpore学习总结七——模型训练

1、模型训练

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

现在我们有了数据集和模型后,可以进行模型的训练与评估。

2、构建数据集

首先从数据集 Dataset加载代码,构建数据集。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset# Download data from open datasets
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)def datapipe(path, batch_size):image_transforms = [vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]label_transform = transforms.TypeCast(mindspore.int32)#mindspore.dataset.transforms.TypeCast(data_type)#将输入的Tensor转换为指定的数据类型。dataset = MnistDataset(path)dataset = dataset.map(image_transforms, 'image')dataset = dataset.map(label_transform, 'label')dataset = dataset.batch(batch_size)return datasettrain_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

 3、定义神经网络模型

从网络构建中加载代码,构建一个神经网络模型。

class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()#将数据从start_dim 到 end_dim 的维度,对输入Tensor进行展平self.dense_relu_sequential = nn.SequentialCell(#构造Cell顺序容器。nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsmodel = Network()

 4、定义超参、损失函数和优化器

4.1 超参

        超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

公式中,𝑛是批量大小(batch size),η是学习率(learning rate)。另外,𝑤𝑡为训练轮次𝑡中的权重参数,∇𝑙为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

epochs = 3
batch_size = 64
learning_rate = 1e-2

4.2 损失函数

        损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

        常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss,可以对logits 进行归一化并计算预测误差。

loss_fn = nn.CrossEntropyLoss()

 4.3 优化器

        模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。

mindspore.nn.SGD(paramslearning_rate=0.1momentum=0.0dampening=0.0weight_decay=0.0nesterov=Falseloss_scale=1.0)

随机梯度下降的实现。动量可选。

【参数】

  • params (Union[list[Parameter], list[dict]]) - 当 params 为会更新的 Parameter 列表时, params 中的元素必须为类 Parameter。当 params 为 dict 列表时,”params”、”lr”、”weight_decay”、”grad_centralization”和”order_params”为可以解析的键。

    • params - 必填。当前组别的权重,该值必须是 Parameter 列表。

    • lr - 可选。如果键中存在”lr”,则使用对应的值作为学习率。如果没有,则使用优化器中的参数 learning_rate 作为学习率。支持固定和动态学习率。

    • weight_decay - 可选。如果键中存在”weight_decay”,则使用对应的值作为权重衰减值。如果没有,则使用优化器中配置的 weight_decay 作为权重衰减值。当前 weight_decay 仅支持float类型,不支持动态变化。

    • grad_centralization - 可选。如果键中存在”grad_centralization”,则使用对应的值,该值必须为布尔类型。如果没有,则认为 grad_centralization 为False。该参数仅适用于卷积层。

    • order_params - 可选。值的顺序是参数更新的顺序。当使用参数分组功能时,通常使用该配置项保持 parameters 的顺序以提升性能。如果键中存在”order_params”,则会忽略该组配置中的其他键。”order_params”中的参数必须在某一组 params 参数中。

  • learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]) - 默认值: 0.1 。

    • float - 固定的学习率。必须大于等于零。

    • int - 固定的学习率。必须大于等于零。整数类型会被转换为浮点数。

    • Tensor - 可以是标量或一维向量。标量是固定的学习率。一维向量是动态的学习率,第i步将取向量中第i个值作为学习率。

    • Iterable - 动态的学习率。第i步将取迭代器第i个值作为学习率。

    • LearningRateSchedule - 动态的学习率。在训练过程中,优化器将使用步数(step)作为输入,调用 LearningRateSchedule 实例来计算当前学习率。

  • momentum (float) - 浮点动量,必须大于等于0.0。默认值: 0.0 。

  • dampening (float) - 浮点动量阻尼值,必须大于等于0.0。默认值: 0.0 。

  • weight_decay (float) - 权重衰减(L2 penalty),必须大于等于0。默认值: 0.0 。

  • nesterov (bool) - 启用Nesterov动量。如果使用Nesterov,动量必须为正,阻尼必须等于0.0。默认值: False 。

  • loss_scale (float) - 梯度缩放系数,必须大于0.0。如果 loss_scale 是整数,它将被转换为浮点数。通常使用默认值,仅当训练时使用了 FixedLossScaleManager,且 FixedLossScaleManager 的 drop_overflow_update 属性配置为 False 时,此值需要与 FixedLossScaleManager 中的 loss_scale 相同。有关更多详细信息,请参阅 mindspore.amp.FixedLossScaleManager。默认值: 1.0 。

        我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

5、训练与评估

        设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  1. 训练:迭代训练数据集,并尝试收敛到最佳参数。
  2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。

接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。

        使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

mindspore.value_and_grad(fngrad_position=0weights=Nonehas_aux=Falsereturn_ids=False)

生成求导函数,用于计算给定函数的正向计算结果和梯度。

函数求导包含以下三种场景:

  1. 对输入求导,此时 grad_position 非None,而 weights 是None;

  2. 对网络变量求导,此时 grad_position 是None,而 weights 非None;

  3. 同时对输入和网络变量求导,此时 grad_position 和 weights 都非None。

【参数】

  • fn (Union[Cell, Function]) - 待求导的函数或网络。

  • grad_position (Union[NoneType, int, tuple[int]]) - 指定求导输入位置的索引。若为int类型,表示对单个输入求导;若为tuple类型,表示对tuple内索引的位置求导,其中索引从0开始;若是None,表示不对输入求导,这种场景下, weights 非None。默认值: 0 。

  • weights (Union[ParameterTuple, Parameter, list[Parameter]]) - 训练网络中需要返回梯度的网络变量。一般可通过 weights = net.trainable_params() 获取。默认值: None 。

  • has_aux (bool) - 是否返回辅助参数的标志。若为 True , fn 输出数量必须超过一个,其中只有 fn 第一个输出参与求导,其他输出值将直接返回。默认值: False 。

  • return_ids (bool) - 是否返回由返回的梯度和指定求导输入位置的索引或网络变量组成的tuple。若为 True ,其输出中所有的梯度值将被替换为:由该梯度和其输入的位置索引,或者用于计算该梯度的网络变量组成的tuple。默认值: False 。

# Define forward function
def forward_fn(data, label):logits = model(data)loss = loss_fn(logits, label)return loss, logits# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)# Define function of one-step training
def train_step(data, label):(loss, _), grads = grad_fn(data, label)optimizer(grads)return lossdef train_loop(model, dataset):size = dataset.get_dataset_size()model.set_train()for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):loss = train_step(data, label)if batch % 100 == 0:loss, current = loss.asnumpy(), batchprint(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

def test_loop(model, dataset, loss_fn):num_batches = dataset.get_dataset_size()model.set_train(False)total, test_loss, correct = 0, 0, 0for data, label in dataset.create_tuple_iterator():pred = model(data)total += len(data)test_loss += loss_fn(pred, label).asnumpy()correct += (pred.argmax(1) == label).asnumpy().sum()test_loss /= num_batchescorrect /= totalprint(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

相关文章:

昇思MindSpore学习总结七——模型训练

1、模型训练 模型训练一般分为四个步骤: 构建数据集。定义神经网络模型。定义超参、损失函数及优化器。输入数据集进行训练与评估。 现在我们有了数据集和模型后,可以进行模型的训练与评估。 2、构建数据集 首先从数据集 Dataset加载代码&#xff0…...

AI时代创新潮涌,从探路到引路,萤石云引领千行百业创新

步入AI新时代,AI、云计算、大数据等技术迅速迭代,并日益融入经济社会发展各领域全过程,数字经济成为推动千行百业转型升级的重要驱动力量。 今年的政府工作报告提出,深入推进数字经济创新发展。积极推进数字产业化、产业数字化&a…...

计算机毕业设计Python深度学习美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

Python美食推荐系统开题报告 一、项目背景与意义 随着互联网和移动技术的飞速发展,人们的生活方式发生了巨大变化,尤其是餐饮行业。在线美食平台如雨后春笋般涌现,为用户提供了丰富的美食选择。然而,如何在海量的餐饮信息中快速…...

【鸿蒙学习笔记】鸿蒙ArkTS学习笔记

应用开发导读:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/application-dev-guide-V5 这里写目录标题 基础组件通用属性容器组件Button 迭代完备 【鸿蒙培训】第1天・环境安装 【鸿蒙培训】第2天・装饰器・组件和页面…...

广东行政职业学院数据智能订单班开班暨上进双创工作室签约仪式圆满结束

为响应教育领域数字化与智能化浪潮这一变革,给学生提供更好的教育资源和实践机会,6月27日,“泰迪广东行政职业学院数据智能订单班开班仪式暨上进双创工作室签约授牌”在广东行政职业学院举行。广东行政职业学院智慧政务学院(电子信…...

python与matlab微分切片的区别

python python使用np中的linespace生成等间隔数值, import numpy as np numpy.linspace(start, stop, num50, endpointTrue, retstepFalse, dtypeNone, axis0)start:序列的起始值。stop:序列的结束值。如果 endpoint 为 True,该…...

MSPG3507——蓝牙接收数据显示在OLED,滴答定时器延时500MS

#include "ti_msp_dl_config.h" #include "OLED.h" #include "stdio.h"volatile unsigned int delay_times 0;//搭配滴答定时器实现的精确ms延时 void delay_ms(unsigned int ms) {delay_times ms;while( delay_times ! 0 ); } int a0; …...

Linux 安装 Redis 教程

优质博文:IT-BLOG-CN 一、准备工作 配置gcc:安装Redis前需要配置gcc: yum install gcc如果配置gcc出现依赖包问题,在安装时提示需要的依赖包版本和本地版本不一致,本地版本过高,出现如下问题&#xff1a…...

【高考志愿】建筑学

目录 一、专业介绍 1.1 专业定义 1.2 专业培养目标 1.3 核心课程 二、就业方向和前景 2.1 就业方向 2.2 专业前景 三、报考注意 四、行业趋势与未来展望 五、建筑学专业排名 一、专业介绍 1.1 专业定义 建筑学,这一充满艺术与科技魅力的学科,…...

Kubernetes的发展历程:从Google内部项目到云原生计算的基石

目录 一、起源与背景 1.1 Google的内部项目 1.2 Omega的出现 二、Kubernetes的诞生 2.1 开源的决策 2.2 初期发布 三、Kubernetes的发展历程 3.1 社区的成长 3.2 生态系统的壮大 3.3 重大版本和功能 3.4 多云和混合云的支持 四、Kubernetes的核心概念 4.1 Pod 4.…...

/proc/config.gz

前言 有时候,我们想知道一个运行着的内核都打开了哪些编译选项,当然,查看编译环境的 .config 文件是一个不错的选择,除此之外,还有没有别的办法呢?当然有,那就是 /proc/config.gz。 一睹风采 …...

论坛万能粘贴手(可将任意文件转为文本)

该软件可将任意文件转为文本。 还原为原文件的方法:将得到的文本粘贴到记事本,另存为UUE格式,再用压缩软件如winrar解压即可得到原文件。建议用于小软件。 下载地址:https://download.csdn.net/download/wgxds/89505015 使用演示…...

学习笔记——动态路由——OSPF(OSPF协议的工作原理)

八、OSPF协议的工作原理 1、原理概要 (1)相邻路由器之间周期性发送HELLO报文,以便建立和维护邻居关系 (2)建立邻居关系后,给邻居路由器发送数据库描述报文(DBD),也就是将自己链路状态数据库中的所有链路状态项目的摘要信息发送给邻居路由器…...

Mybatis1(JDBC编程和ORM模型 MyBatis简介 实现增删改查 MyBatis生命周期)

目录 一、JDBC编程和ORM模型 1. JDBC回顾 2. JDBC的弊端 3. ORM模型 Mybatis和hibernate 区别: 4. mybatis 解决了jdbc 的问题 二、MyBatis简介 1. MyBatis快速开始 1.1 导入jar包 1.2 引入 mybatis-config.xml 配置文件 1.3 引入 Mapper 映射文件 1.3 测试 …...

论文阅读YOLO-World: Real-Time Open-Vocabulary Object Detection

核心: 开放词汇的实时的yolo检测器。重参数化的视觉语言聚合路径模块Re-parameterizable VisionLanguage Path Aggregation Network (RepVL-PAN)实时核心:轻量化的检测器离线词汇推理过程重参数化 方法 预训练方案:将实例注释重新定义为区域…...

SM2的签名值byte数组与ASN.1互转

ASN.1抽象语言标记(Abstract Syntax Notation One) ASN.1是一种 ISO/ITU-T 标准,描述了一种对数据进行表示、编码、传输和解码的数据格式,它提供了一整套正规的格式用于描述对象的结构。 一、该结构的应用场景 例如在做待签名的数字信封时,数字信封使用ASN.1封装,这个时…...

云计算与生成式AI的技术盛宴!亚马逊云科技深圳 Community Day 社区活动流程抢先知道!

小李哥最近要给大家分享7月7日在深圳的即将举办的亚马逊云科技生成式AI社区活动Community Day ,干货很多内容非常硬核,不仅有技术分享学习前沿AI技术,大家在现场还可以动手实践沉浸式体验大模型,另外参与现场活动还可以领取诸多精…...

【鸿蒙学习笔记】基础组件Progress:进度条组件

官方文档:Progress 目录标题 作用最全属性迭代追加进度赋值风格样式 作用 进度条组件 最全属性迭代追加 Progress({ value: 20, total: 100, type: ProgressType.Linear }).color(Color.Green)// 颜色.width(200)// 大小.height(50)// 高度.value(50)// 进度可更…...

前程无忧滑块

声明(lianxi a15018601872) 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 前言(lianxi …...

一站式uniapp优质源码项目模版交易平台的崛起与影响

一、引言 随着信息技术的飞速发展,软件源码已成为推动行业进步的重要力量。源码的获取、交易和流通,对于开发者、企业以及项目团队而言,具有极其重要的意义。为满足市场对高质量源码资源的迫切需求,一站式uniapp优质源码项目模版…...

Python中vars用法

在 Python 中,vars() 函数返回对象的 __dict__ 属性的字典。这个字典包含了对象的所有属性和它们的值。vars() 函数可以用于模块、类、实例,或者拥有 __dict__ 属性的任何其它对象。这里有几个使用 vars() 的例子: 一.模块 如果对一个模块使…...

【机器学习】基于Transformer的迁移学习:理论与实践

引言 在机器学习领域,迁移学习已成为提升模型训练效率和性能的重要策略,特别是在标注数据稀缺的场景下。Transformer模型自2017年由Google提出以来,在自然语言处理(NLP)领域取得了突破性进展,并逐渐扩展到…...

如何应对情绪和培养理性的书

以下是几本关于如何应对情绪和培养理性的书籍推荐: 《情绪智商》(Emotional Intelligence) - 丹尼尔戈尔曼(Daniel Goleman) 这本书探讨了情绪智商(EQ)的重要性以及如何通过提高EQ来改善个人和职…...

[数据集][目标检测]电缆钢丝绳线缆缺陷检测数据集VOC+YOLO格式1800张3类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1800 标注数量(xml文件个数):1800 标注数量(txt文件个数):1800 标注…...

【Git 学习笔记】Ch1.1 Git 简介 + Ch1.2 Git 对象

还是绪个言吧 今天整理 GitHub 仓库,无意间翻到了几年前自学 Git 的笔记。要论知识的稳定性,Git 应该能挤进前三——只要仓库还在,理论上当时的所有开发细节都可以追溯出来。正好过段时间会用到 Git,现在整理出来就当温故知新了。…...

Python 中别再用 ‘+‘ 拼接字符串了!

目录 引言 为什么不推荐使用 "" 示例代码 更高效的替代方法 使用 join 方法 示例代码 使用格式化字符串(f-strings) 示例代码 引言 大家好,在 Python 编程中,我们常常需要对字符串进行拼接。你可能会自然地想到…...

六西格玛绿带培训的证书有什么用处?

近年来,六西格玛作为一套严谨而系统的质量管理方法,被广泛运用于各行各业。而六西格玛绿带培训证书,作为这一方法论中基础且重要的认证,对于个人和企业而言,都具有不可忽视的价值。本文将从多个角度深入探讨六西格玛绿…...

《妃梦千年》第二十章:风雨欲来

第二十章:风雨欲来 战斗的胜利让林清婉和皇上的关系更加亲密,但宫中的阴谋却并未因此而停止。一天,林清婉正在寝宫中思考未来的对策,忽然接到一个紧急消息。小翠匆匆跑来,神色紧张:“娘娘,太后…...

深入理解二分法

前言 二分法(Binary Search)是一种高效的查找算法,广泛应用于计算机科学和工程领域。它用于在有序数组中查找特定元素,其时间复杂度为 O(log n),显著优于线性搜索的 O(n)。本文将深入介绍二分法的原理、实现及其应用场…...

【C命名规范】遵循良好的命名规范,提高代码的可读性、可维护性和可复用性

/******************************************************************** * brief param return author date version是代码书写的一种规范 * brief :简介,简单介绍函数作用 * param :介绍函数参数 * return:函数返回类型说明 * …...

Hbase面试题总结

一、介绍下HBase架构 --HMaster HBase集群的主节点,负责管理和协调整个集群的操作。它处理元数据和表的分区信息,控制RegionServer的负载均衡和故障恢复。--RegionServer HBase集群中的工作节点,负责存储和处理数据。每个RegionServer管理若…...

C语言部分复习笔记

1. 指针和数组 数组指针 和 指针数组 int* p1[10]; // 指针数组int (*p2)[10]; // 数组指针 因为 [] 的优先级比 * 高,p先和 [] 结合说明p是一个数组,p先和*结合说明p是一个指针 括号保证p先和*结合,说明p是一个指针变量,然后指…...

Rust学习笔记 (命令行命令) : 用override set 设置工具链

在cargo run某个项目时出现了如下错误:error: failed to run custom build command for ring v0.16.20(无法运行“Ring v0.16.20”的自定义构建命令),在PowerShell命令行运行命令 rustup override set stable-msvc后成功运行。 o…...

cv::Mat类的矩阵内容输出的各种格式的例子

操作系统&#xff1a;ubuntu22.04OpenCV版本&#xff1a;OpenCV4.9IDE:Visual Studio Code编程语言&#xff1a;C11 功能描述 我们可以这样使用&#xff1a;cv::Mat M(…); cout << M;&#xff0c;直接将矩阵内容输出到控制台。 输出格式支持多种风格&#xff0c;包括O…...

Redis--注册中心集群 Cluster 集群-单服务器

与“多服务器集群”一致需要创建redis配置模板 参照以下链接 CSDN 创建redis容器 node01服务器上创建容器 docker run -d --name redis-6381 --net host --privilegedtrue \ -v /soft/redis-cluster/6381/conf/redis.conf:/etc/redis/redis.conf \ -v /soft/redis-cluster/6…...

CV01_相机成像原理与坐标系之间的转换

目录 0.引言&#xff1a;小孔成像->映射表达式 1. 相机自身的运动如何表征&#xff1f;->外参矩阵E 1.1 旋转 1.2 平移 2. 如何投影到“像平面”&#xff1f;->内参矩阵K 2.1 图像平面坐标转换为像素坐标系 3. 三维到二维的维度是如何丢失的&#xff1f;…...

Android Lint

文章目录 Android Lint概述工作流程Lint 问题问题种类警告严重性检查规则 用命令运行 LintAndroidStudio 使用 Lint忽略 Lint 警告gradle 配置 Lint查找无用资源文件 Android Lint 概述 Lint 是 Android 提供的 代码扫描分析工具&#xff0c;它可以帮助我们发现代码结构/质量…...

【算法刷题 | 动态规划14】6.28(最大子数组和、判断子序列、不同的子序列)

文章目录 35.最大子数组和35.1题目35.2解法&#xff1a;动规35.2.1动规思路35.2.2代码实现 36.判断子序列36.1题目36.2解法&#xff1a;动规36.2.1动规思路36.2.2代码实现 37.不同的子序列37.1题目37.2解法&#xff1a;动规37.2.1动规思路37.2.2代码实现 35.最大子数组和 35.1…...

vue3 vxe-grid列中绑定vxe-switch实现数据更新

1、先上一张图&#xff1a; <template #valueSlot"{ row }"><vxe-switch :value"getV(row.svalue)" change"changeSwitch(row)" /></template>function getV(value){return value 1;};function changeSwitch(row) {console.l…...

Hive SQL:实现炸列(列转行)以及逆操作(行转列)

目录 列转行行转列 列转行 函数&#xff1a; EXPLODE(ARRAY)&#xff1a;将ARRAY中的每一元素转换为每一行 EXPLODE(MAP)&#xff1a;将MAP中的每个键值对转换为两行&#xff0c;其中一行数据包含键&#xff0c;另一行数据包含值 数据样例&#xff1a; 1、将每天的课程&#…...

MD5算法详解

哈希函数 是一种将任意输入长度转变为固定输出长度的函数。 一些常见哈希函数有&#xff1a;MD5、SHA1、SHA256。 MD5算法 MD5算法是一种消息摘要算法&#xff0c;用于消息认证。 数据存储方式&#xff1a;小段存储。 数据填充 首先对我们明文数据进行处理&#xff0c;使其…...

ES6的代理模式-Proxy

语法 target 要使用 Proxy 包装的目标对象&#xff08;可以是任何类型的对象&#xff0c;包括原生数组&#xff0c;函数&#xff0c;甚至另一个代理handler 一个通常以函数作为属性的对象&#xff0c;用来定制拦截行为 const proxy new Proxy(target, handle)举个例子 <s…...

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言 前面介绍了冒泡排序、选择排序、插入排序、希尔排序&#xff0c;作为排序中经常用到了算法&#xff0c;还有堆排序、快速排序、归并排序 堆排序&#xff08;HeaSort&#xff09; 堆排序的概念 堆排序是一种有效的排序算法&#xff0c;它利用了完全二叉树的特性。在C语言…...

七一建党节|热烈庆祝中国共产党成立103周年!

时光荏苒&#xff0c;岁月如梭。 在这热情似火的夏日&#xff0c; 我们迎来了中国共产党成立103周年的重要时刻。 这是一个值得全体中华儿女共同铭记和庆祝的日子&#xff0c; 也是激励我们不断前进的重要时刻。 103年&#xff0c; 风雨兼程&#xff0c;砥砺前行。 从嘉兴…...

Spring Boot应用知识梳理

一.简介 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的工具。它简化了基于 Spring 的应用程序的配置和部署过程&#xff0c;提供了一种快速、便捷的方式来构建独立的、生产级别的 Spring 应用程序。 Spring Boot 的一些主要优点包括&#xff1a; 1. 简化配置…...

Spring中利用重载与静态分派

Spring中利用重载与静态分派 在Java和Spring框架中&#xff0c;重载&#xff08;Overloading&#xff09;和静态分派&#xff08;Static Dispatch&#xff09;是两个非常重要的概念&#xff0c;它们在处理类方法选择和执行过程中扮演着关键角色。本文旨在深入探讨Spring环境下…...

文本三剑客之awk:

文本三剑客awk&#xff1a; grep 查 sed 增删改查 主要&#xff1a;增改 awk 按行取列 awk awk默认的分隔符&#xff1a;空格&#xff0c;tab键&#xff0c;多个空格自动压缩为一个。 awk的工作原理&#xff1a;根据指令信息&#xff0c;逐行的读取文本内容&#xff0c;然…...

SpringSecurity-授权示例

用户基于权限进行授权 定义用户与权限 authorities()。 package com.cms.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.core.userdetails.User; import…...

选哪个短剧系统源码好:全面评估与决策指南

在短剧内容创作和分享日益流行的今天&#xff0c;选择合适的短剧系统源码对于构建一个成功的短剧平台至关重要。短剧系统源码不仅关系到平台的稳定性和用户体验&#xff0c;还直接影响到内容创作者和观众的互动质量。本文将提供一份全面的评估指南&#xff0c;帮助您在众多短剧…...

AI时代的软件工程:挑战与改变

人工智能&#xff08;AI&#xff09;正以惊人的速度改变着我们的生活和工作方式。作为与AI关系最为密切的领域之一&#xff0c;软件工程正经历着深刻的转变。 1 软件工程的演变 软件工程的起源 软件工程&#xff08;Software Engineering&#xff09;是关于如何系统化、规范化地…...

Android 生成 AAR 包

当我们需要在 Android 项目中引用第三方库或模块时&#xff0c;常常会使用 AAR&#xff08;Android Archive&#xff09;包。AAR 包是一种包含了编译后代码、资源文件和清单文件等的二进制文件。 步骤 1&#xff1a;创建一个 Android Library 项目 在 Android Studio 中&#…...

linux下docker安装与镜像容器管理

linux下docker安装与镜像容器管理 原文链接&#xff1a;linux下docker安装与镜像容器管理 导言 ubuntu22.04-docker engine安装&#xff0c;以及镜像容器管理 docker非常简单介绍 docker就是一个虚拟化容器&#xff0c;image是镜像&#xff0c;就是一个dockerfile指明这个镜…...

gdb-dashboard:用Python重塑GDB调试体验

gdb-dashboard&#xff1b;一目了然的GDB调试&#xff0c;尽在掌控之中- 精选真开源&#xff0c;释放新价值。 概览 gdb-dashboard是一个用Python编写的模块化视觉界面&#xff0c;为GNU Debugger&#xff08;GDB&#xff09;提供了一个现代化的工作空间。它通过集成多个面板和…...

python3.8安装详细教程

python3.8下载及安装详细教程 Python 3.8 是一个重要的Python版本&#xff0c;它引入了一系列新功能和改进。以下是对Python 3.8的详细概述&#xff0c;包括其关键特性、安装方法以及版本状态等信息。 Python 3.8的关键特性 海象运算符&#xff08;Walrus Operator&#xff09…...

2024华为数通HCIP-datacom最新题库(变题更新⑤)

请注意&#xff0c;华为HCIP-Datacom考试831已变题 请注意&#xff0c;华为HCIP-Datacom考试831已变题 请注意&#xff0c;华为HCIP-Datacom考试831已变题 近期打算考HCIP的朋友注意了&#xff0c;如果你准备去考试&#xff0c;还是用的之前的题库&#xff0c;切记暂缓。 1、…...

private修饰的方法或属性能被子类继承嘛?

先说结论&#xff1a;能。 这是一个反直觉的问题&#xff0c;毕竟大家在学习阶段接收到的知识就是&#xff1a;被privaite修饰的方法和成员变量不能被继承。 证明过程可参考文档&#xff1a;private修饰的变量如何调用_你真的熟悉java继承关系&#xff1f;那你知道父类private…...

嘉兴燃气09908与嘉兴管网公司订立天然气供应框架协议

智通财经APP讯,嘉兴燃气发布公告,于2024年5月23日,该公司(作为供应商)与嘉兴管网公司作为(作为买方)订立天然气供应框架协议。根据天然气供应框架协议,嘉兴管网公司与该公司可不时就该公司于2024年5月23日至2027年3月31日期间向嘉兴管网公司供应天然气订立最终协议,惟须遵…...

jpom linux发布前端 ruoyi

前置条件 辅助安装 安装jdk curl -fsSL https://jpom.top/docs/install.sh | bash -s Server jdkonly-moduledefault 一键安装maven 后端必备 curl -fsSL https://jpom.top/docs/install.sh | bash -s Server mvnonly-moduledefault 一键安装node 前端必备 curl -fsSL http…...

【Linux进程篇】Linux进程管理——进程创建与终止

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 目录 进程创建 fork函数初识 写时拷贝 fork常规用法 fork调用失败的原因 进程终止 进程退出场景 _exit函数 exit函数 return退出 进程创建 fork函数初识 在linux中fork函数时非常重要的函数&#xff0c;它从已…...

STM32定时器及输出PWM完成呼吸灯

文章目录 一、STM32定时器原理1、基本定时器2、通用定时器&#xff08;1&#xff09;时钟源&#xff08;2&#xff09;预分频器PSC&#xff08;3&#xff09;计数器CNT&#xff08;4&#xff09;自动装载寄存器ARR 3、高级定时器 二、PWM工作原理三、控制LED以2s的频率周期性地…...

(超详细)字符函数和字符串函数【上】

前言 C 语言中对字符和字符串的处理很是频繁&#xff0c;但是 C 语言本身是没有字符串类型的&#xff0c;字符串通常放在 常量字符串 中或者 字符数组 中。 字符串常量 适用于那些对它不做修改的字符串函数 . 1.求字符串长度函数 strlen函数 我们要求一个字符串函数的长度…...

视创云展「VR直播」是什么?有哪些功能和应用场景?

视创云展「VR直播」通过“3D沉浸式展厅直播高互动感”的创新玩法&#xff0c;使企业随时随地举办一场低成本、高互动、能获客的元宇宙直播活动成为可能。「VR直播」能实现3D展厅内VR场景漫游&#xff0c;更结合音视频交互、同屏互动等新功能&#xff0c;为用户带来更沉浸的虚拟…...