弹性网络回归(Elastic Net Regression)
弹性网络回归(Elastic Net Regression)的详细理论知识推导
理论背景
弹性网络回归结合了岭回归(Ridge Regression)和Lasso回归(Lasso Regression)的优点,通过引入两个正则化参数来实现特征选择和模型稳定性。它解决了Lasso在处理高相关特征时的缺陷,并且在处理高维数据时表现优异。
数学公式
Elastic Net回归的损失函数如下:

其中:

推导
目标函数:Elastic Net的目标函数是均方误差(MSE)和两个正则化项的加权和。
梯度下降:通过梯度下降法求解目标函数的最小值,更新回归系数。

特征选择:L1正则化项可以将一些回归系数缩小为零,从而实现特征选择。

模型稳定性:L2正则化项增加了模型的稳定性,减少过拟合。

实施步骤
数据预处理:标准化或归一化数据。
拆分数据集:将数据集拆分为训练集和测试集。
模型训练:使用Elastic Net回归模型进行训练。
模型评估:使用测试集评估模型性能。
参数解读

未优化模型实例
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) * 0.5# 数据分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)# 转换 y_train 和 y_test 为一维数组
y_train = y_train.ravel()
y_test = y_test.ravel()# 创建Elastic Net回归模型
elastic_net = ElasticNet(alpha=1.0, l1_ratio=0.5)
elastic_net.fit(X_train_scaled, y_train)# 进行预测
y_pred = elastic_net.predict(X_test_scaled)# 模型评估
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Mean Squared Error: {mse}")
print(f"R^2 Score: {r2}")
print(f"Intercept: {elastic_net.intercept_}")
print(f"Coefficients: {elastic_net.coef_}")# 可视化结果
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', label='Predicted')
plt.xlabel("X")
plt.ylabel("y")
plt.title("Elastic Net Regression")
plt.legend()
plt.show()
可视化展示

结果解释
Mean Squared Error (MSE): 表示预测值与实际值之间的平均平方误差。值越小,模型性能越好。
R^2 Score: 决定系数,度量模型的拟合优度。值越接近1,模型解释力越强。
Intercept: 截距,表示回归方程在y轴上的截距。
Coefficients: 回归系数,表示自变量对因变量的影响。
优化后的模型实例
from sklearn.linear_model import ElasticNetCV# 创建带交叉验证的Elastic Net回归模型
elastic_net_cv = ElasticNetCV(alphas=np.logspace(-6, 6, 13), l1_ratio=np.linspace(0.1, 1.0, 10), cv=5)
elastic_net_cv.fit(X_train_scaled, y_train)# 进行预测
y_pred_cv = elastic_net_cv.predict(X_test_scaled)# 模型评估
mse_cv = mean_squared_error(y_test, y_pred_cv)
r2_cv = r2_score(y_test, y_pred_cv)print(f"Best Alpha: {elastic_net_cv.alpha_}")
print(f"Best L1 Ratio: {elastic_net_cv.l1_ratio_}")
print(f"Mean Squared Error (CV): {mse_cv}")
print(f"R^2 Score (CV): {r2_cv}")
print(f"Intercept (CV): {elastic_net_cv.intercept_}")
print(f"Coefficients (CV): {elastic_net_cv.coef_}")# 可视化结果
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred_cv, color='red', label='Predicted')
plt.xlabel("X")
plt.ylabel("y")
plt.title("Elastic Net Regression with Cross-Validation")
plt.legend()
plt.show()
可视化展示

结果解释
- Best Alpha: 通过交叉验证选择的最佳正则化参数。
- Best L1 Ratio: 通过交叉验证选择的最佳L1正则化比例。
- Mean Squared Error (CV): 交叉验证后的均方误差。
- R^2 Score (CV): 交叉验证后的决定系数。
- Intercept (CV): 交叉验证后的截距。
- Coefficients (CV): 交叉验证后的回归系数。
通过比较两个实例,可以看出优化后的模型通过交叉验证选择了最佳的正则化参数,从而提高了模型的预测性能和泛化能力。
相关文章:
弹性网络回归(Elastic Net Regression)
弹性网络回归(Elastic Net Regression)的详细理论知识推导 理论背景 弹性网络回归结合了岭回归(Ridge Regression)和Lasso回归(Lasso Regression)的优点,通过引入两个正则化参数来实现特征选择…...
【深度学习】FaceChain-SuDe,免训练,AI换脸
https://arxiv.org/abs/2403.06775 FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation 摘要 最近,基于主体驱动的生成技术由于其个性化文本到图像生成的能力,受到了广泛关注。典型的研…...
Uniapp鸿蒙项目实战
Uniapp鸿蒙项目实战 24.7.6 Dcloud发布了uniapp兼容鸿蒙的文档:Uniapp开发鸿蒙应用 在实际使用中发现一些问题,开贴记录一下 设备准备 windows电脑准备(家庭版不行,教育版、企业版、专业版也可以,不像uniapp说的只有…...
计算机三级嵌入式笔记(一)—— 嵌入式系统概论
目录 考点1 嵌入式系统 考点2 嵌入式系统的组成与分类 考点3 嵌入式系统的分类与发展 考点4 SOC芯片 考点5 数字(电子)文本 考点6 数字图像 考点7 数字音频与数字视频 考点8 数字通信 考点9 计算机网络 考点10 互联网 考纲(2023&am…...
react Jsx基础概念和本质
什么是jsx jsx是JavaScript和XML(HTML)的缩写,表示在js代码中编写HTML模板结构,它是react中编写UI模板的方式 const message this is message function App(){return (<div><h1>this is title</h1>{message}</div>) } jsx优…...
【深大计算机系统(2)】实验一 实验环境配置与使用 附常用指令
目录 一、 实验目标: 二、实验环境与工件: 三、实验内容与步骤 1. 学习并熟悉Linux基本操作,按照要求创建用户。(30分) 2.新建用户主目录下创建子目录:gdbdebug,并进入gdbdebug子目录。将过程和…...
目标检测经典模型之YOLOV5-detect.py源码解析(持续更新)
detect文件框架 一、导入模块包二、定义run函数1. 归一化操作代码解析uint8精度转换归一化 2. 扩展维度为什么扩展维度?代码解释 3. 对检测结果类别计数检查是否有检测结果统计每个类别的出现次数构建描述性字符串 三、定义命令行参数四、主函数 本帖是YOLOV5推理部…...
PF4J+SpringBoot
plugin-common pom.xml相关配置 <groupId>pub.qingyun</groupId> <artifactId>plugin-common</artifactId> <version>0.0.1-SNAPSHOT</version> <description>插件配置类</description><dependency><groupId>or…...
设计模式11-原型模式
设计模式11-原型模式 写在前面对象创建模式典型模式原型模式动机结构代码推导应用特点要点总结 原型模式与工厂方法模式对比工厂方法模式原型模式什么时候用什么模式 写在前面 对象创建模式 通过对象创建模式绕开动态内存分配来避免创建过程中所导致的耦合过紧的问题。从而支…...
Tomcat长连接源码解析
长连接: 客户端发送Http请求至服务端,请求发送完之后socket连接不断开,可以继续接收下一个Http请求并且解析返回。接手并解析这些Http请求的时候socket连接不断开,这种过程被称为长连接。 需要注意的点就在于,在满足什么条件的情况…...
C++编程:实现一个跨平台安全的定时器Timer模块
文章目录 0. 概要1. 设计目标2. SafeTimer 类的实现2.1 头文件 safe_timer.h源文件 safe_timer.cpp 3. 工作流程图4. 单元测试 0. 概要 对于C应用编程,定时器模块是一个至关重要的组件。为了确保系统的可靠性和功能安全,我们需要设计一个高效、稳定的定…...
PyTorch的自动微分模块【含梯度基本数学原理详解】
文章目录 1、简介1.1、基本概念1.2、基本原理1.2.1、自动微分1.2.2、梯度1.2.3、梯度求导1.2.4、梯度下降法1.2.5、张量梯度举例 1.3、Autograd的高级功能 2、梯度基本计算2.1、单标量梯度2.2、单向量梯度的计算2.3、多标量梯度计算2.4、多向量梯度计算 3、控制梯度计算4、累计…...
AI 绘画|Midjourney设计Logo提示词
你是否已经看过许多别人分享的 MJ 咒语,却仍无法按照自己的想法画图?通过学习 MJ 的提示词逻辑后,你将能够更好地理解并创作自己的“咒语”。本文将详细拆解使用 MJ 设计 Logo 的逻辑,让你在阅读后即可轻松上手,制作出…...
LeNet实验 四分类 与 四分类变为多个二分类
目录 1. 划分二分类 2. 训练独立的二分类模型 3. 二分类预测结果代码 4. 二分类预测结果 5 改进训练模型 6 优化后 预测结果代码 7 优化后预测结果 8 训练四分类模型 9 预测结果代码 10 四分类结果识别 1. 划分二分类 可以根据不同的类别进行多个划分,以…...
【BUG】已解决:java.lang.reflect.InvocationTargetException
已解决:java.lang.reflect.InvocationTargetException 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班出身,就职于医疗科技公司,热衷分享知识,武汉城市开发…...
配置kali 的apt命令在线安装包的源为国内源
目录 一、安装VMware Tools 二、配置apt国内源 一、安装VMware Tools 点击安装 VMware Tools 后,会加载一个虚拟光驱,里面包含 VMware Tools 的安装包 鼠标右键单击 VMware Tools 的安装包,点击复制到 点击 主目录,再点击选择…...
JAVA 异步编程(线程安全)二
1、线程安全 线程安全是指你的代码所在的进程中有多个线程同时运行,而这些线程可能会同时运行这段代码,如果每次运行的代码结果和单线程运行的结果是一样的,且其他变量的值和预期的也是一样的,那么就是线程安全的。 一个类或者程序…...
Golang | Leetcode Golang题解之第260题只出现一次的数字III
题目: 题解: func singleNumber(nums []int) []int {xorSum : 0for _, num : range nums {xorSum ^ num}lsb : xorSum & -xorSumtype1, type2 : 0, 0for _, num : range nums {if num&lsb > 0 {type1 ^ num} else {type2 ^ num}}return []in…...
IDEA自带的Maven 3.9.x无法刷新http nexus私服
问题: 自建的私服,配置了域名,使用http协议,在IDEA中或本地Maven 3.9.x会出现报错,提示http被blocked,原因是Maven 3.8.1开始,Maven默认禁止使用HTTP仓库地址,只允许使用HTTPS仓库地…...
56、本地数据库迁移到阿里云
现有需求,本地数据库迁移到阿里云上。 库名xy102表 test01test02test01 test023条数据。1、登录阿里云界面创建免费试用ECS实列。 阿里云登录页 (aliyun.com)](https://account.aliyun.com/login/login.htm?oauth_callbackhttps%3A%2F%2Fusercenter2.aliyun.com%…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
