【Langchain大语言模型开发教程】记忆
🔗 LangChain for LLM Application Development - DeepLearning.AI
学习目标
1、Langchain的历史记忆 ConversationBufferMemory
2、基于窗口限制的临时记忆 ConversationBufferWindowMemory
3、基于Token数量的临时记忆 ConversationTokenBufferMemory
4、基于历史内容摘要的临时记忆 ConversationSummaryMemory
Langchain的历史记忆(ConversationBufferMemory)
import os
import warnings
from dotenv import load_dotenv, find_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory_ = load_dotenv(find_dotenv())
warnings.filterwarnings('ignore')
我们依然使用智谱的LLM,实例化一下Langchain的记忆模块,并构建一个带有记忆的对话模型
llm = ChatOpenAI(api_key=os.environ.get('ZHIPUAI_API_KEY'),base_url=os.environ.get('ZHIPUAI_API_URL'),model="glm-4",temperature=0.98)memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm,memory = memory,verbose=True
)
进行对话
conversation.predict(input="Hi, my name is Andrew")
conversation.predict(input="What is 1+1?")
conversation.predict(input="What is my name?")
模型确实可以记住我们的名字,打印一下记忆内容
#两种方式
print(memory.buffer)memory.load_memory_variables({})
此外,Langchain还提供了一个函数来添加对话内容
memory.save_context({"input": "Hi"},{"output": "What's up"})
基于窗口限制的临时记忆(ConversationBufferWindowMemory)
from langchain.memory import ConversationBufferWindowMemory
memory = ConversationBufferWindowMemory(k=1) #k表示我们保留最近几轮对话的数量
我们先来添加两轮对话
memory.save_context({"input": "Hi"},{"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},{"output": "Cool"})
通过对话历史可以发现,记忆中只保存了一轮的信息
memory.load_memory_variables({}){'history': 'Human: Not much, just hanging\nAI: Cool'}
我们使用这种记忆方式来构建一个对话模型,发现他确实遗忘了第一轮的信息
llm = ChatOpenAI(api_key=os.environ.get('ZHIPUAI_API_KEY'),base_url=os.environ.get('ZHIPUAI_API_URL'),model="glm-4",temperature=0.98)
memory = ConversationBufferWindowMemory(k=1)
conversation = ConversationChain(llm=llm,memory = memory,verbose=False
)
基于Token数量的临时记忆 ConversationTokenBufferMemory
由于langchain中计算token数量的函数并不支持GLM4,所有使用这个函数会报错,根据源代码目前是支持gpt-3.5-turbo-0301、gpt-3.5-turbo、gpt-4,不知道以后会不会加入国产的这些模型。
memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=500)memory.save_context({"input": "AI is what?!"},{"output": "Amazing!"})
memory.save_context({"input": "Backpropagation is what?"},{"output": "Beautiful!"})
memory.save_context({"input": "Chatbots are what?"}, {"output": "Charming!"})
基于历史内容摘要的临时记忆 ConversationSummaryMemory
同理哈,这个函数的作用就是,我们会将历史的对话信息进行总结然后存在我们的记忆单元中,由于这里同样涉及到token的计算,所以这里也是无法正常运行的了。
from langchain.memory import ConversationSummaryBufferMemory
# create a long string
schedule = "There is a meeting at 8am with your product team. \
You will need your powerpoint presentation prepared. \
9am-12pm have time to work on your LangChain \
project which will go quickly because Langchain is such a powerful tool. \
At Noon, lunch at the italian resturant with a customer who is driving \
from over an hour away to meet you to understand the latest in AI. \
Be sure to bring your laptop to show the latest LLM demo."memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=100)
memory.save_context({"input": "Hello"}, {"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},{"output": "Cool"})
memory.save_context({"input": "What is on the schedule today?"},{"output": f"{schedule}"})
构建一个对话模型 (verbose设置为true可以查看到我们历史的一些信息)
conversation = ConversationChain(llm=llm,memory = memory,verbose=True
)
尝试进行提问
conversation.predict(input="What would be a good demo to show?")
总结(吴恩达老师视频中的内容)
相关文章:
【Langchain大语言模型开发教程】记忆
🔗 LangChain for LLM Application Development - DeepLearning.AI 学习目标 1、Langchain的历史记忆 ConversationBufferMemory 2、基于窗口限制的临时记忆 ConversationBufferWindowMemory 3、基于Token数量的临时记忆 ConversationTokenBufferMemory 4、基于历史…...
最新Qt6的下载与成功安装详细介绍
引言 Qt6 是一款强大的跨平台应用程序开发框架,支持多种编程语言,最常用的是C。Qt6带来了许多改进和新功能,包括对C17的支持、增强的QML和UI技术、新的图形架构,以及构建系统方面的革新。本文将指导你如何在Windows平台上下载和安…...
LeetCode 热题 HOT 100 (001/100)【宇宙最简单版】
【链表】 No. 0160 相交链表 【简单】👉力扣对应题目指路 希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【力扣详解】谢谢你的支持&#x…...
Ubantu 使用 docker 配置 + 远程部署 + 远程开发
大家好我是苏麟 , Ubantu 一些配置 . 视频 : 服务器很贵?搞台虚拟机玩玩!保姆级 Linux 远程开发教程_哔哩哔哩_bilibili Docker安装及配置 安装命令 : sudo apt install docker.io 查看版本号 : docker -v 查看虚拟机地址命令 : ifconfig 虚拟机地址 或…...
应用层自定义协议与序列化
个人主页:Lei宝啊 愿所有美好如期而遇 协议 简单来说,就是通信双方约定好的结构化的数据。 序列化与反序列化 我们通过一个问题引入这个概念,假如我们要实现一个网络版的计算器,那么现在有两种方案,第一种&#x…...
Python学习笔记—100页Opencv详细讲解教程
目录 1 创建和显示窗口... - 4 - 2 加载显示图片... - 6 - 3 保存图片... - 7 - 4 视频采集... - 8 - 5视频录制... - 11 - 6 控制鼠标... - 12 - 7 TrackBar 控件... - 14 - 8.RGB和BGR颜色空间... - 16 - 9.HSV和HSL和YUV.. - 17 - 10 颜色空间的转化... - 18 - …...
C语言·分支和循环语句(超详细系列·全面总结)
前言:Hello大家好😘,我是心跳sy,为了更好地形成一个学习c语言的体系,最近将会更新关于c语言语法基础的知识,今天更新一下分支循环语句的知识点,我们一起来看看吧~ 目录 一、什么是语句…...
Gateway源码分析:路由Route、断言Predicate、Filter
文章目录 源码总流程图说明GateWayAutoConfigurationDispatcherHandlergetHandler()handleRequestWith()RouteToRequestUrlFilterReactiveLoadBalancerClientFilterNettyRoutingFilter 补充知识适配器模式 详细流程图 源码总流程图 在线总流程图 说明 Gateway的版本使用的是…...
ARM体系结构和接口技术(十)按键中断实验①
一、按键中断实验 (一)分析按键电路图 (二)芯片手册 二、按键中断实验分析 注:NVIC----Cortx-M核GIC----Cortx-A核 (一)查看所有外设的总线以及寄存器基地址 注:GIC的总线是A7核的…...
PostgreSQL使用(二)——插入、更新、删除数据
说明:本文介绍PostgreSQL的DML语言; 插入数据 -- 1.全字段插入,字段名可以省略 insert into tb_student values (1, 张三, 1990-01-01, 88.88);-- 2.部分字段插入,字段名必须写全 insert into tb_student (id, name) values (2,…...
有关css的题目
css样式来源有哪些? 内联样式: <a style"color: red"> </a> 内部样式:<style></style> 外部样式:写在独立的 .css文件中的 浏览器的默认样式 display有哪些属性 none - 不展示 block - 块类型…...
【开源库】libodb库编译及使用
前言 本文介绍windows平台下libodb库的编译及使用。 文末提供libodb-2.4.0编译好的msvc2019_64版本,可直接跳转自取 ODB库学习相关 【开源库学习】libodb库学习(一) 【开源库学习】libodb库学习(二) 【开源库学习】…...
电力需求预测挑战赛笔记 Task3 #Datawhale AI 夏令营
上文: 电力需求预测挑战赛笔记 Task2 #Datawhale AI 夏令营-CSDN博客文章浏览阅读80次。【代码】电力需求预测挑战赛笔记 Task2。https://blog.csdn.net/qq_23311271/article/details/140360632 前面我们介绍了如何使用经验模型以及常见的lightgbm决策树模型来解决…...
Promise 详解(原理篇)
目录 什么是 Promise 实现一个 Promise Promise 的声明 解决基本状态 添加 then 方法 解决异步实现 解决链式调用 完成 resolvePromise 函数 解决其他问题 添加 catch 方法 添加 finally 方法 添加 resolve、reject、race、all 等方法 如何验证我们的 Promise 是否…...
动态内存经典笔试题分析
目录 1.题目一 2.题目二 3.题目三 4.题目四 1.题目一 #include<stdlib.h> #include<stdio.h> #include<string.h> void GetMemory(char* p) {p (char*)malloc(100); } void Test(void) {char* str NULL;GetMemory(str);strcpy(str, "hello world…...
JS设计模式(一)单例模式
注释很详细,直接上代码 本文建立在已有JS面向对象基础的前提下,若无,请移步以下博客先行了解 JS面向对象(一)类与对象写法 特点和用途: 全局访问点:通过单例模式可以在整个应用程序中访问同一个…...
uniapp动态计算并设置元素高度
<template><view><scroll-view id"sv-box" :scroll-y"true" :style"{height:navHeightpx}"></scroll-view><view id"btn-box"><button>取消</button><button>确认</button><…...
直播架构如何设计核心节点和边缘节点
在直播架构中,核心节点和边缘节点的分工及主要服务是确保直播服务稳定、高效和可扩展的关键。以下是对这些节点的详细描述: 核心节点 核心节点通常位于数据中心,负责处理直播的主要逻辑和数据处理。其主要服务包括: 直播管理后…...
自动驾驶-预测概览
通过生成一条路径来预测一个物体的行为,在每一个时间段内,为每一辆汽车重新计算预测他们新生成的路径,这些预测路径为规划阶段做出决策提供了必要信息 预测路径有实时性的要求,预测模块能够学习新的行为。我们可以使用多源的数据…...
基于PSO算法优化PID参数的一些问题
目录 前言 Q1:惯性权重ω如何设置比较好?学习因子C1和C2如何设置? Q2:迭代速度边界设定一定能够遍历(/覆盖)整个PID参数二维空间范围吗?还是说需要与迭代次数相关?迭代次数越高&a…...
什么是决策树?
1. 什么是决策树? 决策树(Decision Tree)是一种常用的机器学习算法,用于解决分类和回归问题。它通过构建树结构来表示决策过程,分支节点表示特征选择,叶节点表示类别或回归值。 2. 决策树的组成部分 决策…...
ASP 快速参考
ASP 快速参考 概述 ASP(Active Server Pages)是一种由微软开发的服务器端脚本环境,用于动态网页设计和开发。它允许开发者创建和运行动态交互性网页,如访问数据库、发送电子邮件等。ASP页面通常以.asp为文件扩展名,并…...
(二)原生js案例之数码时钟计时
原生js实现的数字时间上下切换显示时间的效果,有参考相关设计,思路比较难,代码其实很简单 效果 代码实现 必要的样式 <style>* {padding: 0;margin: 0;}.content{/* text-align: center; */display: flex;align-items: center;justif…...
[CSS] 浮动布局的深入理解与应用
文章目录 浮动的简介元素浮动后的特点解决浮动产生的影响浮动后的影响解决浮动产生的影响 浮动相关属性实际应用示例示例1:图片与文字环绕示例2:多列布局示例3:响应式布局 总结 浮动布局是CSS中一种非常强大的布局方式,最初设计用…...
Linux云计算 |【第一阶段】ENGINEER-DAY2
主要内容: 磁盘空间管理fdisk、parted工具、开机自动挂载、文件系统、交换空间 KVM虚拟化 实操前骤: 1)添加一块硬盘(磁盘),需要关机才能进行操作,点击左下角【添加硬件】 2)选择2…...
9.11和9.9哪个大?
没问题 文心一言 通义千问...
学懂C语言(十二):C语言中的二进制原理及应用
目录 1. 二进制原理 1.1 什么是二进制? 1.2 如何在C语言中表示二进制? 2. 二进制的表示 2.1 二进制和其他进制的转换 2.2 C语言中的二进制表示 3. 二进制运算 3.1 位运算符 3.2 计算过程示例 4. 应用示例 4.1 使用位运算实现开关 5. 总结 C语…...
科研绘图系列:R语言雨云图(Raincloud plot)
介绍 雨云图(Raincloud plot)是一种数据可视化工具,它结合了多种数据展示方式,旨在提供对数据集的全面了解。雨云图通常包括以下几个部分: 密度图(Density plot):表示数据的分布情况,密度图的曲线可以展示数据在不同数值区间的密度。箱线图(Box plot):显示数据的中…...
优化教学流程和架构:构建高效学习环境的关键步骤
在教育领域,设计和优化教学流程和架构是提高学习效果和学生参与度的关键。本文将探讨如何通过合理的教学流程和有效的架构来构建一个高效的学习环境。 ### 1. 理解教学流程和架构的重要性 教学流程指的是教学活动的组织和顺序,而教学架构则是指支持教学…...
js | this 指向问题
https://juejin.cn/post/6844904083707396109 任何函数运行的时候,都会创建一个context对象,context对象有一个this对象,在运行的时候决定。任何函数都对应一个reference类结构体(具体叫啥有点忘了),简单就…...
大专软件技术好就业吗/咸阳seo
原因:上次用minicom的窗口没有关,,,拔了开发板之后一直没有关终端打开的minicom,后面又重新开minicom,就乱码了 而且键盘输入也是乱码的。...
网站开发给网站设置图标在什么文件中写代码/nba最新交易新闻
需要实现的效果如图,当光标停留在System上时出现文档说明,以下jdk1.8举例 实现: 1、先下载一个jdk api 1.8_google.CHM文件 2、cmd中执行命令 先进入该目录下,然后执行下面命令,其中html1.8文档可以自定义࿰…...
汕头网站快速排名/在哪里找软件开发公司
关于Gdb的使用,请参考:http://blog.csdn.net/haoel/article/details/2879 转载于:https://www.cnblogs.com/itdev/p/6160284.html...
京东商城网站建设策划书/网络推广教程
2.3 不合法的常量有:0892;3.8E-3.14 2.4 "Hello!" 长度:6字节 占内存 7字节 ;“ABC\n\\TH\064\?” 长度:9字节 占内存 10字节 注:\n换行符 不占长度 、\\ 转义字符 只取 \、\064 表示64位 取ASC…...
咨询网站 模板/环球网
在上次的分享中,介绍了模型建立与使用梯度下降法优化参数、梯度校验,以及一些超参数的经验。 本节课的主要内容: 1链式法则 2深度学习框架中链式法则 3全连接神经网络 1、链式法则 目前我们所处的阶段: 学习了SVM softmax两个模型…...
网站自动采集更新/百度app下载最新版
【Morty】普通人改变命运的秘密!我的观点可能会颠覆你的认知_哔哩哔哩_bilibili 非常感谢UP,你的每个视频我都看了,给我启示最大的是《为什么你总是那么穷》,这些年一直走背运,加上20年创业失败了,已经身无…...