当前位置: 首页 > news >正文

pytorch学习(十)优化函数

优化函数主要有,SGD, Adam,RMSProp这三种,并且有lr学习率,momentum动量,betas等参数需要设置。

通过这篇文章,可以学到pytorch中的优化函数的使用。

1.代码

代码参考《python深度学习-基于pytorch》,改了一下网络结构,其他没变化。

import torch
import torch.utils.data as Data
import torch.nn.functional as Func
import matplotlib.pyplot as pltLR =0.01
BATCH_SIZE = 20
EPOCH = 12#生成数据
#将一维变成二维数据
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))A = x.size()
B = x.size()torch_dataset = Data.TensorDataset(x,y)
data_loader = Data.DataLoader(dataset=torch_dataset,batch_size= BATCH_SIZE,shuffle=False)class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.hidden1 = torch.nn.Linear(1,20)self.hidden2 = torch.nn.Linear(20, 40)self.predict = torch.nn.Linear(40,1)def forward(self,x):x = Func.relu(self.hidden1(x))x = Func.relu(self.hidden2(x))x = self.predict(x)return xnet_SGD = Net()
net_Momentum = Net()
net_PMSProp = Net()
NET_Adam = Net()nets = {net_SGD,net_Momentum,net_PMSProp,NET_Adam }opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),momentum=0.3,lr=LR)
opt_PMSProp = torch.optim.RMSprop(net_PMSProp.parameters())
opt_Adam = torch.optim.Adam(NET_Adam.parameters(),lr=LR,betas=(0.9,0.99))optimizers = {opt_SGD,opt_Momentum, opt_PMSProp, opt_Adam}loss_func = torch.nn.MSELoss()loss_his =[[],[],[],[]]for epoch in range((EPOCH)):for step,(batch_x,batch_y) in enumerate(data_loader):for net, opt, l_his, in zip(nets, optimizers,loss_his):output = net(batch_x)loss = loss_func(output,batch_y)opt.zero_grad()loss.backward()opt.step()l_his.append(loss.data.numpy())
labels = ['SGD','SGD_Momentum','RMSProp','Adam']#可视化
for i, l_his in enumerate(loss_his):plt.plot(l_his,label = labels[i])
plt.legend(loc='best')
plt.xlabel('steps')
plt.ylabel('loss')
# plt.ylim((0,0.8))
plt.show()

2.结果

通过测试,发现每一次的结果都不一样,每一次结果的显示图也不一样。因为shuffle=True。

为shuffle=True时候显示的其中一个结果为:

当shuffle为False时,发现也不稳定,其中一张结果显示为:

3.大家copy代码后,可以调一调batch_size,lr,momentum,betas等参数。

其中lr动态修改学习率的代码为:

print(opt_SGD.param_groups)
opt_SGD.param_groups[0]['lr']*=0.1
opt_SGD.param_groups[0]['momentum']

相关文章:

pytorch学习(十)优化函数

优化函数主要有,SGD, Adam,RMSProp这三种,并且有lr学习率,momentum动量,betas等参数需要设置。 通过这篇文章,可以学到pytorch中的优化函数的使用。 1.代码 代码参考《python深度学习-基于pytorch》&…...

Ubuntu22.04:安装Samba

1.安装Samba服务 $ sudo apt install samba samba-common 2.创建共享目录 $ mkdir /home/xxx/samba $ chmod 777 /home/xxx/samba 3.将用户加入到Samba服务中 $ sudo smbpasswd -a xxx 设置用户xxx访问Samba的密码 4.配置Samba服务 $ sudo vi /etc/samba/smb.conf 在最后加入 …...

Powershell 使用介绍

0 Preface/Foreword 0.1 参考文档 Starting Windows PowerShell - PowerShell | Microsoft Learn 1 Powershell 介绍 2 命令介绍 2.1 新建文件夹 New-Item -Path C:\GitLab-Runner -ItemType Directory 2.2 切换路径 cd C:\GitLab-Runner 2.3 下载文件 Invoke-WebRequ…...

【Langchain大语言模型开发教程】记忆

🔗 LangChain for LLM Application Development - DeepLearning.AI 学习目标 1、Langchain的历史记忆 ConversationBufferMemory 2、基于窗口限制的临时记忆 ConversationBufferWindowMemory 3、基于Token数量的临时记忆 ConversationTokenBufferMemory 4、基于历史…...

最新Qt6的下载与成功安装详细介绍

引言 Qt6 是一款强大的跨平台应用程序开发框架,支持多种编程语言,最常用的是C。Qt6带来了许多改进和新功能,包括对C17的支持、增强的QML和UI技术、新的图形架构,以及构建系统方面的革新。本文将指导你如何在Windows平台上下载和安…...

LeetCode 热题 HOT 100 (001/100)【宇宙最简单版】

【链表】 No. 0160 相交链表 【简单】👉力扣对应题目指路 希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【力扣详解】谢谢你的支持&#x…...

Ubantu 使用 docker 配置 + 远程部署 + 远程开发

大家好我是苏麟 , Ubantu 一些配置 . 视频 : 服务器很贵?搞台虚拟机玩玩!保姆级 Linux 远程开发教程_哔哩哔哩_bilibili Docker安装及配置 安装命令 : sudo apt install docker.io 查看版本号 : docker -v 查看虚拟机地址命令 : ifconfig 虚拟机地址 或…...

应用层自定义协议与序列化

个人主页:Lei宝啊 愿所有美好如期而遇 协议 简单来说,就是通信双方约定好的结构化的数据。 序列化与反序列化 我们通过一个问题引入这个概念,假如我们要实现一个网络版的计算器,那么现在有两种方案,第一种&#x…...

Python学习笔记—100页Opencv详细讲解教程

目录 1 创建和显示窗口... - 4 - 2 加载显示图片... - 6 - 3 保存图片... - 7 - 4 视频采集... - 8 - 5视频录制... - 11 - 6 控制鼠标... - 12 - 7 TrackBar 控件... - 14 - 8.RGB和BGR颜色空间... - 16 - 9.HSV和HSL和YUV.. - 17 - 10 颜色空间的转化... - 18 - …...

C语言·分支和循环语句(超详细系列·全面总结)

前言:Hello大家好😘,我是心跳sy,为了更好地形成一个学习c语言的体系,最近将会更新关于c语言语法基础的知识,今天更新一下分支循环语句的知识点,我们一起来看看吧~ 目录 一、什么是语句&#xf…...

Gateway源码分析:路由Route、断言Predicate、Filter

文章目录 源码总流程图说明GateWayAutoConfigurationDispatcherHandlergetHandler()handleRequestWith()RouteToRequestUrlFilterReactiveLoadBalancerClientFilterNettyRoutingFilter 补充知识适配器模式 详细流程图 源码总流程图 在线总流程图 说明 Gateway的版本使用的是…...

ARM体系结构和接口技术(十)按键中断实验①

一、按键中断实验 (一)分析按键电路图 (二)芯片手册 二、按键中断实验分析 注:NVIC----Cortx-M核GIC----Cortx-A核 (一)查看所有外设的总线以及寄存器基地址 注:GIC的总线是A7核的…...

PostgreSQL使用(二)——插入、更新、删除数据

说明:本文介绍PostgreSQL的DML语言; 插入数据 -- 1.全字段插入,字段名可以省略 insert into tb_student values (1, 张三, 1990-01-01, 88.88);-- 2.部分字段插入,字段名必须写全 insert into tb_student (id, name) values (2,…...

有关css的题目

css样式来源有哪些&#xff1f; 内联样式&#xff1a; <a style"color: red"> </a> 内部样式&#xff1a;<style></style> 外部样式&#xff1a;写在独立的 .css文件中的 浏览器的默认样式 display有哪些属性 none - 不展示 block - 块类型…...

【开源库】libodb库编译及使用

前言 本文介绍windows平台下libodb库的编译及使用。 文末提供libodb-2.4.0编译好的msvc2019_64版本&#xff0c;可直接跳转自取 ODB库学习相关 【开源库学习】libodb库学习&#xff08;一&#xff09; 【开源库学习】libodb库学习&#xff08;二&#xff09; 【开源库学习】…...

电力需求预测挑战赛笔记 Task3 #Datawhale AI 夏令营

上文&#xff1a; 电力需求预测挑战赛笔记 Task2 #Datawhale AI 夏令营-CSDN博客文章浏览阅读80次。【代码】电力需求预测挑战赛笔记 Task2。https://blog.csdn.net/qq_23311271/article/details/140360632 前面我们介绍了如何使用经验模型以及常见的lightgbm决策树模型来解决…...

Promise 详解(原理篇)

目录 什么是 Promise 实现一个 Promise Promise 的声明 解决基本状态 添加 then 方法 解决异步实现 解决链式调用 完成 resolvePromise 函数 解决其他问题 添加 catch 方法 添加 finally 方法 添加 resolve、reject、race、all 等方法 如何验证我们的 Promise 是否…...

动态内存经典笔试题分析

目录 1.题目一 2.题目二 3.题目三 4.题目四 1.题目一 #include<stdlib.h> #include<stdio.h> #include<string.h> void GetMemory(char* p) {p (char*)malloc(100); } void Test(void) {char* str NULL;GetMemory(str);strcpy(str, "hello world…...

JS设计模式(一)单例模式

注释很详细&#xff0c;直接上代码 本文建立在已有JS面向对象基础的前提下&#xff0c;若无&#xff0c;请移步以下博客先行了解 JS面向对象&#xff08;一&#xff09;类与对象写法 特点和用途&#xff1a; 全局访问点&#xff1a;通过单例模式可以在整个应用程序中访问同一个…...

uniapp动态计算并设置元素高度

<template><view><scroll-view id"sv-box" :scroll-y"true" :style"{height:navHeightpx}"></scroll-view><view id"btn-box"><button>取消</button><button>确认</button><…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

[特殊字符] 手撸 Redis 互斥锁那些坑

&#x1f4d6; 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作&#xff0c;想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁&#xff0c;也顺便跟 Redisson 的 RLock 机制对比了下&#xff0c;记录一波&#xff0c;别踩我踩过…...

比特币:固若金汤的数字堡垒与它的四道防线

第一道防线&#xff1a;机密信函——无法破解的哈希加密 将每一笔比特币交易比作一封在堡垒内部传递的机密信函。 解释“哈希”&#xff08;Hashing&#xff09;就是一种军事级的加密术&#xff08;SHA-256&#xff09;&#xff0c;能将信函内容&#xff08;交易细节&#xf…...

Qt/C++学习系列之列表使用记录

Qt/C学习系列之列表使用记录 前言列表的初始化界面初始化设置名称获取简单设置 单元格存储总结 前言 列表的使用主要基于QTableWidget控件&#xff0c;同步使用QTableWidgetItem进行单元格的设置&#xff0c;最后可以使用QAxObject进行单元格的数据读出将数据进行存储。接下来…...