当前位置: 首页 > news >正文

【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks

阅读时间:2023-12-26

1 介绍

年份:2019
作者:Johannes von Oswald,Google Research;Christian Henning,EthonAI AG;Benjamin F. Grewe,苏黎世联邦理工学院神经信息学研究所
期刊: 未发表
引用量:379
Von Oswald J, Henning C, Grewe B F, et al. Continual learning with hypernetworks[J]. arXiv preprint arXiv:1906.00695, 2019.
本文提出了任务条件的超网络(元模型网络)作为一种适用于持续学习的神经网络模型,它通过使用使用一个较小的超网络来生成目标网络的权重,然后再结合限制权重更新的正则化方法(如EWC、SI、MAS)来实现连续学习。超网络是基于任务身份来生成权重,在这种学习模式下,任务是顺序呈现的,目标是在学习新任务的同时,保留或提升在先前任务上的性能,同时利用已获得的知识。然后加上连续学习中权重更新的正则化技术,使得超网络在生成权重时能够保留之前任务的学习成果。实验结果表明,这种方法在压缩模式下,超网络能够有效地用相对较少的参数来生成一个更大的目标网络的参数,也能实现长期记忆的保持。论文还探讨了任务嵌入空间的结构,并展示了任务条件超网络能够展示迁移学习的能力。
image.png
image.png
image.png

2 创新点

  1. 任务条件超网络:提出了一种新型的超网络,它能够根据任务身份生成目标网络的权重,从而实现对不同任务的适应。
  2. 任务嵌入学习:任务嵌入作为可学习的参数,使得超网络能够为每个任务生成独特的权重配置,增强了模型对任务之间差异的适应性。
  3. 持续学习中的灾难性遗忘解决方案:可以通过加入正则化机制,有效地解决灾难性遗忘问题。
  4. 模型压缩:利用分块超网络实现了模型压缩,使得超网络的参数数量可以少于目标网络的参数数量,从而减少了存储和计算资源的需求。
  5. 上下文无关推理:提出了在任务身份未知的情况下进行推理的策略,包括基于预测不确定性的任务推断和使用生成模型进行合成数据重放。

3 算法步骤

image.png

  1. 初始化超网络
    • 超网络是一个元模型(metamodel),其参数为 Θ h \Theta_h Θh,用于生成目标网络的权重 Θ t r g t \Theta_{trgt} Θtrgt
  2. 学习任务嵌入
    • 对于每个任务,学习一个任务嵌入向量 e ( t ) e(t) e(t),该向量为超网络提供任务特定的上下文。
  3. 目标网络权重生成
    • 使用超网络和任务嵌入向量,生成目标网络的权重配置 Θ t r g t = f h ( e , Θ h ) \Theta_{trgt} = f_h(e, \Theta_h) Θtrgt=fh(e,Θh)
  4. 正向传播与任务学习
    • 利用生成的权重 Θ t r g t \Theta_{trgt} Θtrgt和当前任务的数据 ( X ( t ) , Y ( t ) ) (X(t), Y(t)) (X(t),Y(t))进行正向传播,并通过反向传播更新超网络参数 Θ h \Theta_h Θh
  5. 权重更新正则化
    • 为了防止灾难性遗忘,使用一个正则化项来惩罚那些改变先前任务学习到的权重配置的参数更新。正则化项 L o u t p u t L_{output} Loutput确保了在训练新任务时,先前任务的权重配置 Θ h ∗ \Theta_h^* Θh保持稳定。
  6. 计算总损失
    • 总损失 L t o t a l L_{total} Ltotal由当前任务的损失 L t a s k L_{task} Ltask和输出正则化项 L o u t p u t L_{output} Loutput组成。
  7. 更新超网络参数
    • 使用优化算法(Adam)根据总损失 L t o t a l L_{total} Ltotal更新超网络的参数 Θ h \Theta_h Θh
  8. 记忆保持
    • 在学习新任务时,通过正则化项保持对先前任务的记忆,而不需要存储大量的数据。
  9. 任务条件超网络的压缩
    • 通过分块(chunking)策略,超网络可以迭代地生成目标网络的一部分权重,从而实现模型压缩。
  10. 上下文无关推理
  • 在某些情况下,任务身份在推理时可能不明确。本文提出了策略来推断任务身份,例如基于预测不确定性的方法或使用生成模型进行合成数据重放。
  • 预测不确定性的方法:给定一个输入样本,网络需要推断它属于哪个任务。使用超网络为所有已知任务生成权重配置,并使用这些权重在目标网络上进行前向传播。对于每个任务,计算网络输出的熵(或不确定性),低熵意味着高确定性。选择预测不确定性最低的任务作为输入样本的任务标签。
  • **任务推断网络:**训练一个辅助网络来预测输入样本的任务身份。使用超网络保护的合成数据和真实数据训练一个任务推断网络。根据任务推断网络的输出,选择相应的任务嵌入向量,并使用超网络生成目标网络的权重。
  • 生成重放:重放方法不需要考虑任务身份,统一输入模型预测。首先使用超网络生成的参数训练一个生成模型,在训练新任务时,从生成模型中合成先前任务的数据。将合成数据与当前任务的真实数据混合,用于训练目标模型。可以使用额外的任务推断网络来确定输入样本的任务身份。
  • 经验重放:重放方法不需要考虑任务身份,统一输入模型预测。在训练新任务时,将重放数据与当前任务的真实数据结合。在推理时,不依赖于任务上下文,直接使用训练过程中学到的权重进行前向传播。

4 实验分析

(1)不同方法的回归拟合表现
image.png
虚线表示真实函数,而标记点则展示了模型预测的结果。超网络能够顺序地学习一系列逐渐增加次数的多项式函数,并且能够很好地拟合每个任务的函数,即使在顺序学习的过程中也是如此。微调方法虽然在新任务上可能表现良好,但会牺牲对旧任务的记忆,导致先前任务的性能下降。
(2)Permuted MNIST基准测试上的实验结果
image.png
超网络在模型参数数量较少的情况下实现有效的持续学习,即使在压缩比低于1的情况下也能保持较高的准确率。
(4)Permuted MNIST和Split MNIST实验中不同持续学习方法的平均测试准确率
image.png

  • EWC:在线弹性权重固化(online Elastic Weight Consolidation)。
  • SI:突触智能(Synaptic Intelligence)。
  • DGR:深度生成性重放(Deep Generative Replay),具体为DGR+distill。
  • HNET+ENT:基于超网络的方法,使用预测分布的熵来推断任务身份(仅在CL1中使用HNET)。
  • HNET+TIR:使用超网络保护的识别-重放网络(基于变分自编码器VAE)来从输入模式中推断任务。
  • HNET+R:主分类器通过混合当前任务数据和由超网络保护的VAE生成的合成数据进行训练。

任务条件超网络(HNET)在持续学习环境中,尤其是在需要顺序学习并记忆多个任务的场景中,具有显著的性能优势。这些方法能够有效地解决灾难性遗忘问题,并在不同任务之间实现有效的知识迁移。
(5)Split MNIST基准测试中任务嵌入空间的二维可视化
image.png
图a中在低维(二维)嵌入空间中,模型也能够实现高分类性能,并且几乎没有遗忘。
图b中最后一个任务占据了一个有限的高性能区域,当远离该嵌入向量时,性能逐渐下降,但下降是平滑的。这表明即使在有限的嵌入空间内,模型也能够为每个任务找到一个相对独立的区域,以保持其性能。
(4)持续学习基准测试
image.png
使用超网络保护的ResNet-32模型显示出几乎没有任何遗忘的现象。最终的平均性能(红色)与每个任务训练结束后立即测试的性能(蓝色)相匹配,这表明模型在学习新任务时能够保留对先前任务的记忆。从红色线高于紫色线看出,表明利用先前学习的知识比从头开始训练每个任务的性能更好。当禁用超网络的正则化项时(黄色),模型表现出强烈的遗忘现象。这表明正则化项在防止灾难性遗忘中起着关键作用。

5 思考

(1)使用分块超网络(Chunked Hypernetworks)的主要动机和优势是什么?

  1. 模型压缩
    • 在现代深度神经网络中,权重的数量通常非常庞大。分块超网络通过分批次生成目标网络的权重,可以减少所需的存储空间和计算资源。
  2. 参数效率
    • 分块超网络允许使用较少的参数来控制目标网络的权重,这使得模型更加参数高效,尤其是在资源受限的环境中。
  3. 灵活性
    • 分块超网络提供了一种灵活的方式来生成目标网络的权重,可以根据不同任务的需求调整生成的权重块。
  4. 任务特定权重生成
    • 通过为每个任务学习特定的任务嵌入向量,分块超网络可以生成适合特定任务的权重,从而提高任务的性能。
  5. 减少灾难性遗忘
    • 在持续学习场景中,分块超网络可以通过正则化技术保护先前任务的知识,减少在学习新任务时对旧任务知识的遗忘。

如果不使用分块超网络,可能会有以下影响:

  1. 存储需求增加
    • 需要存储整个目标网络的权重,这在权重数量庞大时会占用大量存储空间。
  2. 计算成本增加
    • 在训练和推理过程中,需要处理更多的参数,这会增加计算资源的消耗。
  3. 灾难性遗忘
    • 在持续学习环境中,如果不采取措施保护先前任务的知识,学习新任务时可能会遗忘旧任务的知识,导致性能下降。
  4. 泛化能力受限
    • 没有分块超网络的灵活性,可能难以为不同的任务生成最优的权重配置,从而影响模型在新任务上的泛化能力。
  5. 训练难度增加
    • 直接在目标网络上进行训练可能会使得模型更难收敛,尤其是在任务之间存在显著差异的情况下。
  6. 资源分配不均
    • 在没有模型压缩的情况下,可能无法有效地利用有限的计算和存储资源,导致资源分配不均。

(2)只有在分块的超网络结构中借鉴了PNN架构。

相关文章:

【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks

阅读时间:2023-12-26 1 介绍 年份:2019 作者:Johannes von Oswald,Google Research;Christian Henning,EthonAI AG;Benjamin F. Grewe,苏黎世联邦理工学院神经信息学研究所 期刊&a…...

使用 tcpdump 进行网络流量捕获与分析

目录 安装 tcpdump基本用法捕获网络流量指定网络接口捕获特定主机的流量捕获特定端口的流量捕获特定协议的流量 常用选项保存捕获的数据包从文件读取数据包显示数据包内容指定捕获数据包的长度限制捕获的数据包数量显示详细信息过滤表达式 示例捕获本地回环接口上的HTTP流量捕获…...

k8s集群 安装配置 Prometheus+grafana

k8s集群 安装配置 Prometheusgrafana k8s环境如下:机器规划: node-exporter组件安装和配置安装node-exporter通过node-exporter采集数据显示192.168.40.180主机cpu的使用情况显示192.168.40.180主机负载使用情况 Prometheus server安装和配置创建sa账号&…...

【Java--数据结构】二叉树oj题(上)

前言 欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 判断是否是相同的树 oj链接 要判断树是否一样,要满足3个条件 根的 结构 和 值 一样左子树的结构和值一样右子树的结构和值一样 所以就可以总结以下思路…...

微服务之间Feign调用

需使用的服务 FeignClient(name "rdss-back-service", fallback SysUserServiceFallback.class, configuration FeignConfiguration.class) public interface SysUserService {/*** 订单下单用户模糊查询*/GetMapping(value "/user/getOrderUserName")…...

【Qt】按钮的属性相关API

目录 一. QPushButton 二. QRadioButton 按钮组 三. QCheckBox Qt中按钮的继承体系如下图 QAbstractButton是一个抽象类,集成了按钮的核心属性和API 按钮说明QPushButton(普通按钮)最常见的按钮,用于触发操作或者事件。可以设…...

blender和3dmax和maya和c4d比较

Blender、3ds Max、Maya和Cinema 4D (C4D)都是强大的3D建模和动画软件,但它们各有特点和适用领域。以下是它们的比较: Blender: 开源免费全面的功能,包括建模、动画、渲染、视频编辑等学习曲线较陡峭,但社区支持强大适合独立艺术家…...

visio保存一部分图/emf图片打开很模糊/emf插入到word或ppt中很模糊

本文主要解决三个问题 visio保存一部分图 需求描述:在一个visio文件中画了很多个图,但我只想把其中一部分保存成某种图片格式,比如jpg emf png之类的,以便做后续的处理。 方法:超级容易。 选中希望保存的这部分图&…...

沙尘传输模拟教程(基于wrf-chem)

沙尘传输模拟教程(基于wrf-chem) 文章目录 沙尘传输模拟教程(基于wrf-chem)简介实验目的wrf-chem简介 软件准备wps、wrf-chem安装conda安装ncl安装ncap安装 数据准备气象数据准备下垫面数据准备 WPS数据预处理namelist.wps的设置geogrid.exe下垫面处理ungrib.exe气象数据预处理…...

使用 Python 进行测试(8)纯净测试

原文:Testing with Python (part 8): purity test 总结 如果你要使用综合测试(integrated tests): def test_add_new_item_to_cart(product, cart):new_product Product.objects.create(nameNew Product, price15.00)new_cart…...

python的tkinter、socket库开发tcp的客户端和服务端

一、tcp通讯流程和开发步骤 1、tcp客户端和服务端通讯流程图 套接字是通讯的利器,连接时要经过三次握手建立连接,断开连接要经过四次挥手断开连接。 2、客户端开发流程 1)创建客户端套接字 2)和服务端器端套接字建立连接 3&#x…...

Python面试题:Python中的异步编程:详细讲解asyncio库的使用

Python 的异步编程是实现高效并发处理的一种方法,它使得程序能够在等待 I/O 操作时继续执行其他任务。在 Python 中,asyncio 库是实现异步编程的主要工具。asyncio 提供了一种机制来编写可以在单线程内并发执行的代码,适用于 I/O 密集型任务。…...

【信号频率估计】MVDR算法及MATLAB仿真

目录 一、MVDR算法1.1 简介1.2 原理1.3 特点1.3.1 优点1.3.2 缺点 二、算法应用实例2.1 信号的频率估计2.2 MATLAB仿真代码 三、参考文献 一、MVDR算法 1.1 简介 最小方差无失真响应(Mininum Variance Distortionless Response,MVDR)算法最…...

HarmonyOS NEXT零基础入门到实战-第二部分

HarmonyOS NEXT零基础入门到实战-第二部分 Swiper 轮播组件 Swiper是一个 容器 组件,当设置了多个子组件后,可以对这些 子组件 进行轮播显示。(文字、图片...) 1、Swiper基本语法 2、Swiper常见属性 3、Swiper样式自定义 4、案例&…...

《小程序02:云开发之增删改查》

一、前置操作 // 一定要用这个符号包含里面的${}才会生效 wx.showToast({title: 获取数据成功:${colorLista}, })1.1:初始化介绍 **1、获取数据库引用:**在开始使用数据库 API 进行增删改查操作之前,需要先获取数据库的引用 cons…...

SQL执行流程、SQL执行计划、SQL优化

select查询语句 select查询语句中join连接是如何工作的? 1、INNER JOIN 返回两个表中的匹配行。 2、LEFT JOIN 返回左表中的所有记录以及右表中的匹配记录。 3、RIGHT JOIN 返回右表中的所有记录以及左表中的匹配记录。 4、FULL OUTER JOIN 返回左侧或右侧表中有匹…...

【前端】JavaScript入门及实战41-45

文章目录 41 嵌套的for循环42 for循环嵌套练习(1)43 for循环嵌套练习(2)44 break和continue45 质数练习补充 41 嵌套的for循环 <!DOCTYPE html> <html> <head> <title></title> <meta charset "utf-8"> <script type"…...

更加深入Mysql-04-MySQL 多表查询与事务的操作

文章目录 多表查询内连接隐式内连接显示内连接 外连接左外连接右外连接 子查询 事务事务隔离级别 多表查询 有时我们不仅需要一个表的数据&#xff0c;数据可能关联到俩个表或者三个表&#xff0c;这时我们就要进行夺标查询了。 数据准备&#xff1a; 创建一个部门表并且插入…...

基于最新版的flutter pointycastle: ^3.9.1的AES加密

基于最新版的flutter pointycastle: ^3.9.1的AES加密 自己添加pointycastle: ^3.9.1库config.dartaes_encrypt.dart 自己添加pointycastle: ^3.9.1库 config.dart import dart:convert; import dart:typed_data;class Config {static String password 成都推理计算科技; // …...

K8S内存资源配置

在 Kubernetes (k8s) 中&#xff0c;资源请求和限制用于管理容器的 CPU 和内存资源。配置 CPU 和内存资源时&#xff0c;使用特定的单位来表示资源的数量。 CPU 资源配置 CPU 单位&#xff1a;Kubernetes 中的 CPU 资源以 “核” (cores) 为单位。1 CPU 核心等于 1 vCPU/Core…...

【多任务YOLO】 A-YOLOM: You Only Look at Once for Real-Time and Generic Multi-Task

You Only Look at Once for Real-Time and Generic Multi-Task 论文链接&#xff1a;http://arxiv.org/abs/2310.01641 代码链接&#xff1a;https://github.com/JiayuanWang-JW/YOLOv8-multi-task 一、摘要 高精度、轻量级和实时响应性是实现自动驾驶的三个基本要求。本研究…...

数学建模--灰色关联分析法

目录 简介 基本原理 应用场景 优缺点 优点&#xff1a; 缺点&#xff1a; 延伸 灰色关联分析法在水质评价中的具体应用案例是什么&#xff1f; 如何克服灰色关联分析法在主观性强时的数据处理和改进方法&#xff1f; 灰色关联分析法与其他系统分析方法&#xff08;如A…...

NetSuite Saved Search迁移工具

我们需要在系统间迁移Saved Search&#xff0c;但是采用Copy To Account或者Bundle时&#xff0c;会有一些Translation不能迁移&#xff0c;或者很多莫名其妙的Dependency&#xff0c;导致迁移失败。因此&#xff0c;我们想另辟蹊径&#xff0c;借助代码完成Saved Search的迁移…...

Java IO模型深入解析:BIO、NIO与AIO

Java IO模型深入解析&#xff1a;BIO、NIO与AIO 一. 前言 在Java编程中&#xff0c;IO&#xff08;Input/Output&#xff09;操作是不可或缺的一部分&#xff0c;它涉及到文件读写、网络通信等方面。Java提供了多种类和API来支持这些操作。本文将从IO的基础知识讲起&#xff…...

《从C/C++到Java入门指南》- 9.字符和字符串

字符和字符串 字符类型 Java 中一个字符保存一个Unicode字符&#xff0c;所以一个中文和一个英文字母都占用两个字节。 // 计算1 .. 100 public class Hello {public static void main(String[] args) {char a A;char b 中;System.out.println(a);System.out.println(b)…...

Adobe国际认证详解-视频剪辑

在数字化时代&#xff0c;视频剪辑已成为创意表达和视觉传播的重要手段。随着技术的不断进步&#xff0c;熟练掌握视频剪辑技能的专业人才需求日益增长。在这个背景下&#xff0c;Adobe国际认证应运而生&#xff0c;成为全球创意设计领域的重要标杆。 Adobe国际认证是由Adobe公…...

昇思25天学习打卡营第19天|MindNLP ChatGLM-6B StreamChat

文章目录 昇思MindSpore应用实践ChatGML-6B简介基于MindNLP的ChatGLM-6B StreamChat Reference 昇思MindSpore应用实践 本系列文章主要用于记录昇思25天学习打卡营的学习心得。 ChatGML-6B简介 ChatGLM-6B 是由清华大学和智谱AI联合研发的产品&#xff0c;是一个开源的、支持…...

.NET在游戏开发中有哪些成功的案例?

简述 在游戏开发的多彩世界中&#xff0c;技术的选择往往决定了作品的成败。.NET技术&#xff0c;以其跨平台的性能和强大的开发生态&#xff0c;逐渐成为游戏开发者的新宠。本文将带您探索那些利用.NET技术打造出的著名游戏案例&#xff0c;领略.NET在游戏开发中的卓越表现。 …...

搜维尔科技:我们用xsens完成了一系列高难度的运动项目并且捕获动作

我们用xsens完成了一系列高难度的运动项目并且捕获动作 搜维尔科技&#xff1a;我们用xsens完成了一系列高难度的运动项目并且捕获动作...

深入探讨:Node.js、Vue、SSH服务与SSH免密登录

在这篇博客中&#xff0c;我们将深入探讨如何在项目中使用Node.js和Vue&#xff0c;并配置SSH服务以及实现SSH免密登录。我们会一步步地进行讲解&#xff0c;并提供代码示例&#xff0c;确保你能轻松上手。 一、Node.js 与 Vue 的结合 1.1 Node.js 简介 Node.js 是一个基于 …...

网站建设氺金手指排名15/湖南企业竞价优化

发布一个k8s部署视频&#xff1a;https://edu.csdn.net/course/detail/26967 课程内容&#xff1a;各种k8s部署方式。包括minikube部署&#xff0c;kubeadm部署&#xff0c;kubeasz部署&#xff0c;rancher部署&#xff0c;k3s部署。包括开发测试环境部署k8s&#xff0c;和生产…...

婚礼礼网站如何做的/营销渠道有哪些

转载自&#xff1a;https://www.cnblogs.com/birdsmaller/p/5377104.html 背景 涉及身份验证的系统都需要存储用户的认证信息&#xff0c;常用的用户认证方式主要为用户名和密码的方式&#xff0c;为了安全起见&#xff0c;用户输入的密码需要保存为密文形式&#xff0c;可采用…...

东阳网站建设/找做网站的公司

我们公司的数据库是这样的&#xff1a;开发环境一台(内网)、生产环境一台、为了在不影响同事使用数据库的前提下编写数据库脚本&#xff0c;我在本机也安装了一台SQL 2008服务器。 这样以来&#xff0c;如何同步这三个库上的存储过程和触发器、索引等经常改变的东西就成了我比较…...

宜春做网站 黑酷seo/市场营销推广策划方案

cuda历史各个版本下载链接 https://developer.nvidia.com/cuda-toolkit-archive 1、下载deb包 按照指令要求下载 注意&#xff1a; sudo dpkg -i cuda-repo-ubuntu1604-10-0-local-10.0.130-410.48_1.0-1_amd64.deb sudo apt-key add /var/cuda-repo-/7fa2af80.pub (这步需注意…...

wordpress动态文章页模板/种子搜索神器在线搜

SQL Server中文版的默认的日期字段datetime格式是yyyy-mm-dd Thh:mm:ss.mmm 例如: select getdate() 2004-09-12 11:06:08.177 整理了一下SQL Server里面可能经常会用到的日期格式转换方法: 举例如下: select CONVERT(varchar, getdate(), 120 ) 2004-09-12 11:06:08 select re…...

微信小程序广告收益/系统优化的方法

MAN命令简介 本地系统上通常可用的一个文档源是系统手册页&#xff0c;或称为man page。这些手册页是作为文档所涉及的相应软件包的一部分而提供的&#xff0c;可以使用man命令进行访问。 MAN PAGE导航 命令结果空格向前&#xff08;向下&#xff09;滚动一个屏幕PageDown向…...