第四章.误差反向传播法—ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现
第四章.误差反向传播法
4.2 ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现
1.ReLU层
1).公式

2).导数:

3).计算图:

4).实现:
class ReLU:def __init__(self):self.mask = None# 正向传播def forward(self, x):self.mask = (x <= 0) # 输入值是否≤0,返回值是由True/False构成的Numpy数组out = x.copy()out[self.mask] = 0 # mask中的元素为True的地方置为0return out# 反向传播def backward(self, dout):dout[self.mask] = 0dx = doutreturn dx
2.Sigmoid层
1).公式:

2).计算图:

- 简洁版

3).导数:

4).实现:
import numpy as npclass Sigmoid:def __init__(self):self.out = None# 正向传播def forward(self, x):out = 1 / (1 + np.exp(-x))self.out = outreturn out# 反向传播def backward(self, dout):dx = dout * (1.0 - self.out) * self.outreturn dx
3.Affine层
- 神经网络的正向传播中进行的矩阵乘积运算在几何学领域被称为“仿射变化”,因此,将进行仿射变化的处理实现为Affine层。
- 几何中,仿射变换包括一次线性变换和一次平移,分别对应神经网络的加权和运算和加偏置运算。
1).计算图:
-
单个数据的Affine层:

-
批版本的Affine层:

2).实现:
·未考虑输入张量的情况:
import numpy as npclass Affine:def __init__(self, W, b):self.W = Wself.b = bself.x = Noneself.dw = Noneself.db = None# 正向传播def forward(self, x):self.x = xout = np.dot(self.x, self.W) + self.breturn out# 反向传播def backward(self, dout):dx = np.dot(dout, self.W.T)self.dw = np.dot(self.x.T, dout)self.db = np.sum(dout, axis=0)return dx
·考虑输入张量的情况 (张量就是多维数据)
import numpy as npclass Affine:def __init__(self, W, b):self.W = Wself.b = bself.x = Noneself.original_x_shape = None# 权重和偏置参数的导数self.dW = Noneself.db = Nonedef forward(self, x):# 对应张量self.original_x_shape = x.shape # 例如:x.shape=(209, 64, 64, 3)x = x.reshape(x.shape[0], -1) # x=(209, 64*64*3)self.x = xout = np.dot(self.x, self.W) + self.breturn outdef backward(self, dout):dx = np.dot(dout, self.W.T)self.dW = np.dot(self.x.T, dout)self.db = np.sum(dout, axis=0)dx = dx.reshape(*self.original_x_shape) # 还原输入数据的形状(对应张量)return dx
4.Softmax-with-Loss层
- 神经网络中进行的处理有推理和学习两个阶段,推理阶段通常不适用softmax层,学习阶段需要使用softmax层。
1).计算图:

2).实现:
import numpy as npclass SoftmaxWithLoss:def __init__(self):self.loss = None # 损失self.y = None # softmax的输出self.t = None # 监督数据(one_hot vector)# 输出层函数:softmaxdef softmax(x):if x.ndim == 2:x = x.Tx = x - np.max(x, axis=0)y = np.exp(x) / np.sum(np.exp(x), axis=0)return y.Tx = x - np.max(x) # 溢出对策return np.exp(x) / np.sum(np.exp(x))# 交叉熵误差def cross_entropy_error(y, t):if y.ndim == 1:t = t.reshape(1, t.size)y = y.reshape(1, y.size)# 监督数据是one-hot-vector的情况下,转换为正确解标签的索引if t.size == y.size:t = t.argmax(axis=1)batch_size = y.shape[0]return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size# 正向传播def forward(self, x, t):self.t = tself.y = self.softmax(x)self.loss = self.cross_entropy_error(self.y, self.t)return self.loss# 反向传播def backward(self, dout=1):batch_size = self.t.shape[0]if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况dx = (self.y - self.t) / batch_sizeelse:dx = self.y.copy()dx[np.arange(batch_size), self.t] -= 1dx = dx / batch_sizereturn dx相关文章:
第四章.误差反向传播法—ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现
第四章.误差反向传播法 4.2 ReLU/Sigmoid/Affine/Softmax-with-Loss层的实现 1.ReLU层 1).公式 2).导数: 3).计算图: 4).实现: class ReLU:def __init__(self):self.mask None# 正向传播def forward(self, x):self.mask (x < 0) # 输入…...
Python-第二天 Python基础语法
Python-第二天 Python基础语法一、 字面量1.1 常用的值类型1.1.1 字符串(string)二、注释2.1 注释的作用2.2 注释的分类三、变量3.1 什么是变量3.2 变量的特征四、数据类型4.1 数据类型4.2 type()语句4.3 type()语句的使用方式4.4 变量有类型吗ÿ…...
命令模式包含哪些主要角色?怎样实现命令?
命令模式包含以下主要角色:抽象命令类(Command)角色: 定义命令的接口,声明执行的方法。具体命令(Concrete Command)角色:具体的命令,实现命令接口;通常会持有…...
SpringCloud-Feign
Spring Cloud中集成Feign (只是笔记而已 其中有点命名啥的不对应,搜到了就划走吧) Feign--[feɪn]:Web 服务客户端,能够简化 HTTP 接口的调用。 没有Feign的之前服务提供者 package com.springcloudprovide.controller;import com.springclo…...
XCP实战系列介绍08-基于Vehicle Spy进行XCP测量的工程配置详解
本文框架 1.概述2. 工程配置步骤2.1 创建MEP工程2.1.1 添加A2L文件2.1.2 CAN收发ID配置2.2 MEP属性设置2.2.1 ECU属性设置2.2.2 MEP的Security设置2.3 DAQ设置2.3.1创建DAQ2.3.2 list中测量及标定量的添加和设置2.3.3 设置DAQ list中变量的event1.概述 在前面一篇文章《看了就…...
JVM调优几款好用的内存分析工具
对于高并发访问量的电商、物联网、金融、社交等系统来说,JVM内存优化是非常有必要的,可以提高系统的吞吐量和性能。通常调优的首选方式是减少FGC次数或者FGC时间,以避免系统过多地暂停。FGC达到理想值后,比如一天或者两天触发一次…...
Vue中路由缓存及activated与deactivated的详解
目录前言一,路由缓存1.1 引子1.2 路由缓存的方法1.2.1 keep-alive1.2.2 keep-alive标签中的include属性1.2.3 include中多组件的配置二,activated与deactivated2.1 引子2.2 介绍activated与deactivated2.3 解决需求三,整体代码总结前言 在Vu…...
【漏洞复现】phpStudy 小皮 Windows面板 RCE漏洞
文章目录前言一、漏洞描述二、漏洞复现前言 本篇文章仅用于漏洞复现研究和学习,切勿从事非法攻击行为,切记! 一、漏洞描述 Phpstudy小皮面板存在RCE漏洞,通过分析和复现方式发现其实本质上是一个存储型XSS漏洞导致的RCE。通过系…...
跨域小样本系列2:常用数据集与任务设定详解
来源:投稿 作者:橡皮 编辑:学姐 带你学习跨域小样本系列1-简介篇 跨域小样本系列2-常用数据集与任务设定详解(本篇) 跨域小样本系列3:元学习方法解决CDFSL以及两篇SOTA论文讲解 跨域小样本系列4…...
HTML浪漫动态表白代码+音乐(附源码)
HTML浪漫表白求爱(附源码),内含4款浪漫的表白源码,可用于520,情人节,生日,求爱场景,下载直接使用。 直接上源码吧 一.红色爱心 1.效果 实际效果是动态的哦 2.源码 复制粘贴即可运行哦 <!DOCTYPE…...
The last packet sent successfully to the server was 0 milliseconds ago. 解决办法
mybatis-generator-maven-plugin插件The last packet sent successfully to the server was 0 milliseconds agoYou must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to…...
分布式高级篇1 —— 全文检索
Elasticsearch Elasticsearch简介一、基本概念1、index(索引)2、Type(类型)3、Document(文档)4、倒排索引二、Docker 安装 EL1、拉取镜像2、创建实例三、初步探索1、_cat2、索引一个文档(保存)3、查询文档3、更新文档4、删除文档&索引5、_bulk 批量 AP6、样本测试数据四、进…...
集成电路开发及应用-模拟数字部分专栏目录
三角波发生器电路图分析_XMJYBY的博客-CSDN博客运算放大器正反馈负反馈判别法_如何理解运算放大器的反馈机制,分哪几种_XMJYBY的博客-CSDN博客运算放大器实现多路同向反向加减运算电路公式推导(一)_反向减法运算电路_XMJYBY的博客-CSDN博客运算放大器实现多路同向反向加减运算电…...
ios使用SARUnArchiveANY 解压rar文件(oc和swift版本)
SARUnArchiveANY简介 开源库网址: https://github.com/saru2020/SARUnArchiveANY 简介: 一个iOS的非常有用的库来解压zip,.rar,7z文件。 他是以下库的简单集成: UnrarKitSSZipArchiveLzmaSDKObjC (7z) 需要注意的是…...
【Python学习笔记】21.Python3 函数(2)
前言 本章介绍调用函数时可使用的正式参数。 参数 以下是调用函数时可使用的正式参数类型: 必需参数关键字参数默认参数不定长参数 必需参数 必需参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。 调用 printme() 函数,你必须传入一…...
day57回文子串_最长回文子序列
力扣647.回文子串 题目链接:https://leetcode.cn/problems/palindromic-substrings/ 思路 dp数组含义 dp[i][j]:以s[i]为开头,s[j]为结尾的子串是否是回文子串 递推公式 子串范围为[i,j],当s[i]s[j]时,有三种情况࿱…...
Element UI框架学习篇(二)
Element UI框架学习篇(二) 1 整体布局 1.1 前提说明 el-container标签里面的标签默认是从左往右排列,若想要从上往下排列,只需要写el-header或者el-footer就行了 <el-container>:外层容器 <el-header>:顶栏容器。 <el-aside>&#…...
【C++】类与对象(上)
文章目录一、面向过程和面向对象初步认识二、类的引入三、类的定义四、类的访问限定符及封装①访问限定符②封装五、类的作用域六、类的实例化七、类对象模型①如何计算类对象大小②类对象的存储方式③结构体中内存对齐规则八、this指针①this指针的引出②this指针的特性一、面…...
Leetcode.1797 设计一个验证系统
题目链接 Leetcode.1797 设计一个验证系统 Rating : 1534 题目描述 你需要设计一个包含验证码的验证系统。每一次验证中,用户会收到一个新的验证码,这个验证码在 currentTime时刻之后 timeToLive秒过期。如果验证码被更新了,那么它会在 curr…...
Kaldi - 数据文件准备
文章目录数据文件准备wav.scputt2spkspk2utttext相关代码根据文件生成 utt2spk 和 wav.scputt2spk -- spk2utt 转换数据文件准备 在训练/解码中: 有三个文件是必要的: wav.scp 语音编号 – 路径信息utt2spk 语音编号 – 说话人编号spk2utt 说话人编号 …...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
