当前位置: 首页 > news >正文

如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?

我使用DeepSeek AIDexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中,我将逐步指导您如何构建像我一样的机器人。

DeepSeek 最近发布了R1,这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本,但增加了一些功能。这使它成为构建 AI 驱动应用程序(包括交易机器人)的绝佳工具。Dexscreener 是一种用于跟踪去中心化交易所 (DEX) 的强大工具。它提供有关代币价格、流动性和交易量的实时数据,对加密货币交易者来说必不可少。

步骤 1:入门 首先,在此注册 DeepSeek AI 。

它可以免费使用,并允许您运行自定义提示来构建和部署机器人。 写下你的第一个提示 首先让 DeepSeek AI 充当一位经验丰富的程序员:

“你好。请假装你是一个专业程序员一个哈佛学位和10年的经验。
创造一个机器人与 Dexscreener 交互。
我们需要解析、保存和分析每一枚坚固/抽取/成为层的硬币1、上线CEX等找到模式”。

这将为您的机器人生成初始代码。该机器人将与 Dexscreener API 交互以获取实时数据并进行分析。

第 2 步:添加过滤器和黑名单

加密货币交易存在风险。为了使机器人更安全,我们需要添加过滤器和黑名单。这些功能将:

  1. 过滤掉有风险的代币。
  2. 将与诈骗相关的开发商列入黑名单。

为了使机器人更加强大,我们需要添加过滤器和黑名单以避免有风险的令牌。使用以下提示:

“修改代码 使用过滤器、硬币黑名单和开发者黑名单开发人员列入黑名单。
并将所有这些设置放入配置文件中。”

步骤 3:避免虚假音量

具有虚假交易量的代币可能会欺骗您的机器人。要检测虚假交易量,请集成Pocket Universe API

更新你的机器人

使用以下提示:

“避免使用虚假数量的硬币,通过你的算法检查它是否是假的,或者使用与 Dexscreener 兼容的 Pocket Universe API。”

这会为您的机器人添加一个验证步骤,确保它不会交易不可靠的代币。

步骤 4:防止地毯被拉扯

为了避免诈骗,请与RugCheck.xyz集成。此外,我们可以检测代币供应是否捆绑,这通常是一个危险信号。使用以下提示:

“检查 http://rugcheck.xyz 上的每个代币,并仅与标记为“良好”的合约进行交互。
另外,检查代币的供应是否未捆绑。
如果捆绑 - 黑名单+dev 黑名单。”

第 5 步:自动交易

对于自动交易,请集成BonkBot或Trojan等机器人。这些机器人可以根据您的机器人信号执行交易。 合并代码并添加通知 为了执行交易,我们可以集成现有的交易机器人,如BonkBot或Trojan。我们还将添加 Telegram 通知支持。使用以下提示:

交易选定的代币,请通过 Telegram 使用 BonkBot,同时添加 TG 支持获取买入/卖出通知,并将所有 代码合并为一体。
另外,请写出如何启动代码。”

第 6 步:启动你的机器人

启动机器人的方法如下: 克隆机器人的存储库(如果您还没有,请向 DeepSeek 索取代码)。 安装依赖项: 

pip 安装 -r 要求.txt txt

config.json使用您的过滤器和 API 密钥配置文件。

运行机器人:

python 交易机器人.py py

步骤 7:可选 — 添加 UI

 最后,您可以要求 DeepSeek 为您的机器人创建 UI。尽管由于流量太大,我无法显示它,但 DeepSeek 成功地为我的机器人创建了一个 UI,使其准备好进行交易和分析来自 Dexscreener 的数据。 询问DeepSeek:

为我的机器人创建一个简单的 Web UI,其中包含过滤器、日志和交易仪表

完整代码也可以在这里找到

import requests
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import psycopg2
from sqlalchemy import create_engine
from typing import Dict, List, Optional# Enhanced Configuration
CONFIG = {"DB": {"dbname": "dexscreener","user": "admin","password": "your_password","host": "localhost","port": "5432"},"FILTERS": {"min_liquidity": 5000,  # USD"min_age_days": 3,"coin_blacklist": ["0x123...def",  # Known scam token address"SUSPECTCOIN"   # Blacklisted symbol],"dev_blacklist": ["0x456...abc",  # Known rug developer address"0x789...fed"   # Another scam developer],"chain_whitelist": ["ethereum", "binance-smart-chain"]}
}class EnhancedDexScreenerBot:def __init__(self):self.engine = create_engine(f'postgresql+psycopg2://{CONFIG["DB"]["user"]}:{CONFIG["DB"]["password"]}'f'@{CONFIG["DB"]["host"]}/{CONFIG["DB"]["dbname"]}')self._init_db()self.model = IsolationForest(n_estimators=100, contamination=0.01)self.historical_data = self._load_historical_data()def _init_db(self):"""Initialize database with additional security tables"""with self.engine.connect() as conn:conn.execute("""CREATE TABLE IF NOT EXISTS blacklist (address VARCHAR(42) PRIMARY KEY,type VARCHAR(20) CHECK (type IN ('coin', 'dev')),reason TEXT,listed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);CREATE INDEX IF NOT EXISTS idx_blacklist_type ON blacklist(type);""")# Migrate config blacklists to databaseself._seed_initial_blacklists()def _seed_initial_blacklists(self):"""Initialize blacklists from config"""with self.engine.connect() as conn:# Seed coin blacklistfor address in CONFIG["FILTERS"]["coin_blacklist"]:conn.execute("""INSERT INTO blacklist (address, type)VALUES (%s, 'coin')ON CONFLICT (address) DO NOTHING""",(address,))# Seed dev blacklistfor address in CONFIG["FILTERS"]["dev_blacklist"]:conn.execute("""INSERT INTO blacklist (address, type)VALUES (%s, 'dev')ON CONFLICT (address) DO NOTHING""",(address,))def apply_filters(self, df: pd.DataFrame) -> pd.DataFrame:"""Apply all security and quality filters"""# Chain whitelist filterdf = df[df['chain'].isin(CONFIG["FILTERS"]["chain_whitelist"])]# Liquidity filterdf = df[df['liquidity'] >= CONFIG["FILTERS"]["min_liquidity"]]# Age filtermin_age = datetime.utcnow() - timedelta(days=CONFIG["FILTERS"]["min_age_days"])df = df[pd.to_datetime(df['created_at']) < min_age]# Database blacklist checkblacklisted_coins = pd.read_sql("SELECT address FROM blacklist WHERE type = 'coin'",self.engine)['address'].tolist()blacklisted_devs = pd.read_sql("SELECT address FROM blacklist WHERE type = 'dev'",self.engine)['address'].tolist()# Address and symbol checksdf = df[~df['pair_address'].isin(blacklisted_coins) &~df['base_token_address'].isin(blacklisted_coins) &~df['creator_address'].isin(blacklisted_devs) &~df['base_token_name'].isin(CONFIG["FILTERS"]["coin_blacklist"])]return dfdef process_data(self, raw_data: List[Dict]) -> pd.DataFrame:"""Enhanced data processing with security fields"""df = pd.DataFrame(raw_data)[['pairAddress', 'baseToken', 'quoteToken', 'priceUsd','liquidity', 'volume', 'chainId', 'dexId', 'createdAt']]processed = pd.DataFrame({'pair_address': df['pairAddress'],'base_token_name': df['baseToken'].apply(lambda x: x['name']),'base_token_address': df['baseToken'].apply(lambda x: x['address']),'quote_token_address': df['quoteToken'].apply(lambda x: x['address']),'price': pd.to_numeric(df['priceUsd']),'liquidity': pd.to_numeric(df['liquidity']),'volume_24h': pd.to_numeric(df['volume']['h24']),'chain': df['chainId'],'exchange': df['dexId'],'created_at': pd.to_datetime(df['createdAt'], unit='ms'),'timestamp': datetime.utcnow()})# Apply security filtersprocessed = self.apply_filters(processed)return processeddef detect_anomalies(self, new_data: pd.DataFrame) -> pd.DataFrame:"""Anomaly detection with blacklist awareness"""if not new_data.empty:features = new_data[['price', 'liquidity', 'volume_24h']]features = np.log1p(features)self.model.fit(self.historical_data)anomalies = self.model.predict(features)new_data['anomaly_score'] = self.model.decision_function(features)return new_data[anomalies == -1]return pd.DataFrame()def analyze_market_events(self, anomalous_data: pd.DataFrame):"""Enhanced analysis with blacklist monitoring"""for _, row in anomalous_data.iterrows():# Check for blacklist pattern matchesif self._detect_blacklist_pattern(row):self._log_event(row, 'BLACKLIST_PATTERN')# Existing detection logic...def _detect_blacklist_pattern(self, row: pd.Series) -> bool:"""Detect patterns matching known blacklist characteristics"""# Check for new addresses similar to blacklisted onessimilar_coins = pd.read_sql(f"""SELECT COUNT(*) FROM blacklistWHERE type = 'coin'AND similarity(address, '{row['base_token_address']}') > 0.8""", self.engine).scalar()similar_devs = pd.read_sql(f"""SELECT COUNT(*) FROM blacklistWHERE type = 'dev'AND similarity(address, '{row['creator_address']}') > 0.8""", self.engine).scalar()return similar_coins > 0 or similar_devs > 0def add_to_blacklist(self, address: str, list_type: str, reason: str):"""Programmatically add entries to blacklist"""with self.engine.connect() as conn:conn.execute("""INSERT INTO blacklist (address, type, reason)VALUES (%s, %s, %s)ON CONFLICT (address) DO UPDATE SET reason = EXCLUDED.reason""",(address, list_type, reason))def run(self):"""Enhanced main loop with filtering"""while True:try:raw_data = self.fetch_pair_data()processed_data = self.process_data(raw_data)if not processed_data.empty:anomalies = self.detect_anomalies(processed_data)self.analyze_market_events(anomalies)processed_data.to_sql('pairs', self.engine, if_exists='append', index=False)self.historical_data = pd.concat([self.historical_data, processed_data]).tail(100000)# Update blacklists periodicallyself._refresh_blacklists()time.sleep(60)  # Add sleep between iterationsexcept Exception as e:print(f"Runtime error: {e}")def _refresh_blacklists(self):"""Refresh blacklists from external sources"""# Example: Sync with community-maintained blackliststry:response = requests.get("https://api.gopluslabs.io/api/v1/token_security/1")data = response.json()for token in data['tokens']:if token['is_honeypot']:self.add_to_blacklist(token['contract_address'], 'coin', 'Automated honeypot detection')except Exception as e:print(f"Blacklist refresh failed: {e}")# Example usage with blacklist management
if __name__ == "__main__":bot = EnhancedDexScreenerBot()# Manually add suspicious entrybot.add_to_blacklist("0xNEW...SCAM", "dev", "Suspicious deployment pattern")bot.run()

1

通过遵循这些步骤,您可以创建一个实时的加密货币交易机器人,该机器人可以:
足够聪明,可以避免诈骗。
能够有效地检测趋势和模式。

如果我能在一夜之间将100美元变成35,000美元,你也可以!试试看,祝你交易愉快!🚀

免责声明:加密货币交易涉及高风险。此机器人是协助您分析的工具,不是财务建议。请始终负责任地进行交易。 

1

相关文章:

如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?

我使用DeepSeek AI和Dexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中&#xff0c;我将逐步指导您如何构建像我一样的机器人。 DeepSeek 最近发布了R1&#xff0c;这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本&#xff0c;但增加…...

buu-jarvisoj_level0-好久不见30

嘶&#xff0c;我咋觉得这个也是栈溢出呢&#xff0c;找到读取的值&#xff0c;在再找到后门函数...

深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块

一、梯度消失 梯度消失的根本原因在于 激活函数的性质和链式法则的计算&#xff1a; 激活函数的导数很小&#xff1a; 常见的激活函数&#xff08;例如 Sigmoid 和 Tanh&#xff09;在输入较大或较小时&#xff0c;输出趋于饱和&#xff08;Sigmoid 的输出趋于 0 或 1&#xf…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.2 多维数组切片:跨步访问与内存布局

2.2 多维数组切片&#xff1a;跨步访问与内存布局 目录/提纲 #mermaid-svg-FbBIOMVivQfdX2LJ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-FbBIOMVivQfdX2LJ .error-icon{fill:#552222;}#mermaid-svg-FbBIOMVivQ…...

ResNet--深度学习中的革命性网络架构

一、引言 在深度学习的研究和应用中&#xff0c;网络架构的设计始终是一个关键话题。随着计算能力和大数据的不断提升&#xff0c;深度神经网络逐渐成为解决复杂任务的主流方法。然而&#xff0c;随着网络层数的增加&#xff0c;训练深度神经网络往往面临梯度消失或梯度爆炸的…...

TypeScript语言的语法糖

TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言&#xff0c;它在JavaScript的基础上添加了一些强类型的特性&#xff0c;使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中&#xff0c;不仅包含了静态类型、接口、枚举等强大的特性&…...

17.2 图形绘制4

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 17.2.5 线条样式 C#为画笔绘制线段提供了多种样式&#xff1a;一是线帽&#xff08;包括起点和终点处&#xff09;样式&#xff1b…...

tomcat核心组件及原理概述

目录 1. tomcat概述 1.1 概念 1.2 官网地址 2. 基本使用 2.1下载 3. 整体架构 3.1 核心组件 3.2 从web.xml配置和模块对应角度 3.3 如何处理请求 4. 配置JVM参数 5. 附录 1. tomcat概述 1.1 概念 什么是tomcat Tomcat是一个开源、免费、轻量级的Web服务器。 Tomca…...

本地部署DeepSeek教程(Mac版本)

第一步、下载 Ollama 官网地址&#xff1a;Ollama 点击 Download 下载 我这里是 macOS 环境 以 macOS 环境为主 下载完成后是一个压缩包&#xff0c;双击解压之后移到应用程序&#xff1a; 打开后会提示你到命令行中运行一下命令&#xff0c;附上截图&#xff1a; 若遇…...

MyBatis-Plus笔记-快速入门

大家在日常开发中应该能发现&#xff0c;单表的CRUD功能代码重复度很高&#xff0c;也没有什么难度。而这部分代码量往往比较大&#xff0c;开发起来比较费时。 因此&#xff0c;目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…...

爬取豆瓣书籍数据

# 1. 导入库包 import requests from lxml import etree from time import sleep import os import pandas as pd import reBOOKS [] IMGURLS []# 2. 获取网页源代码 def get_html(url):headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36…...

基于微信小程序的电子商城购物系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

6-图像金字塔与轮廓检测

文章目录 6.图像金字塔与轮廓检测(1)图像金字塔定义(2)金字塔制作方法(3)轮廓检测方法(4)轮廓特征与近似(5)模板匹配方法6.图像金字塔与轮廓检测 (1)图像金字塔定义 高斯金字塔拉普拉斯金字塔 高斯金字塔:向下采样方法(缩小) 高斯金字塔:向上采样方法(放大)…...

【Ai】DeepSeek本地部署+Page Assist图形界面

准备工作 1、ollama&#xff0c;用于部署各种开源模型&#xff0c;并开放接口的程序 https://ollama.com/download 2、deepseek-r1:32b 模型 https://ollama.com/library/deepseek-r1:32b 不同的模型版本对计算机性能的要求不一样&#xff0c;版本越高对显卡和内存的要求越高…...

【最长不下降子序列——树状数组、线段树、LIS】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e510; int a[N], b[N], tr[N];//a保存权值&#xff0c;b保存索引,tr保存f&#xff0c;g前缀属性最大值 int f[N], g[N]; int n, m; bool cmp(int x, int y) {if(a[x] ! a[y]) return a[x] < a[…...

【实战篇章】深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据

文章目录 深入探讨&#xff1a;服务器如何响应前端请求及后端如何查看前端提交的数据一、服务器如何响应前端请求HTTP 请求生命周期全解析1.前端发起 HTTP 请求&#xff08;关键细节强化版&#xff09;2. 服务器接收请求&#xff08;深度优化版&#xff09; 二、后端如何查看前…...

Games104——引擎工具链基础

总览 工具链 用户到引擎架构图 工具链是衔接不同岗位、软件之间的桥梁&#xff0c;比如美术与技术&#xff0c;策划与美术&#xff0c;美术软件与引擎本身等&#xff0c;有Animation、UI、Mesh、Shader、Logical 、Level Editor等等。一般商业级引擎里的工具链代码量是超过…...

分层多维度应急管理系统的设计

一、系统总体架构设计 1. 六层体系架构 #mermaid-svg-QOXtM1MnbrwUopPb {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QOXtM1MnbrwUopPb .error-icon{fill:#552222;}#mermaid-svg-QOXtM1MnbrwUopPb .error-text{f…...

【漏斗图】——1

🌟 解锁数据可视化的魔法钥匙 —— pyecharts实战指南 🌟 在这个数据为王的时代,每一次点击、每一次交易、每一份报告背后都隐藏着无尽的故事与洞察。但你是否曾苦恼于如何将这些冰冷的数据转化为直观、吸引人的视觉盛宴? 🔥 欢迎来到《pyecharts图形绘制大师班》 �…...

(二)QT——按钮小程序

目录 前言 按钮小程序 1、步骤 2、代码示例 3、多个按钮 ①信号与槽的一对一 ②多对一&#xff08;多个信号连接到同一个槽&#xff09; ③一对多&#xff08;一个信号连接到多个槽&#xff09; 结论 前言 按钮小程序 Qt 按钮程序通常包含 三个核心文件&#xff1a; m…...

【Linux】从硬件到软件了解进程

个人主页~ 从硬件到软件了解进程 一、冯诺依曼体系结构二、操作系统三、操作系统进程管理1、概念2、PCB和task_struct3、查看进程4、通过系统调用fork创建进程&#xff08;1&#xff09;简述&#xff08;2&#xff09;系统调用生成子进程的过程〇提出问题①fork函数②父子进程关…...

HTB:Alert[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用ffuf对alert.htb域名进行子域名FUZZ 使用go…...

ARM嵌入式学习--第十天(UART)

--UART介绍 UART(Universal Asynchonous Receiver and Transmitter)通用异步接收器&#xff0c;是一种通用串行数据总线&#xff0c;用于异步通信。该总线双向通信&#xff0c;可以实现全双工传输和接收。在嵌入式设计中&#xff0c;UART用来与PC进行通信&#xff0c;包括与监控…...

玉米苗和杂草识别分割数据集labelme格式1997张3类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;1997 标注数量(json文件个数)&#xff1a;1997 标注类别数&#xff1a;3 标注类别名称:["corn","weed","Bean…...

哈夫曼树

哈夫曼树&#xff08;Huffman Tree&#xff09;是一种最优的二叉树&#xff0c;常用于数据压缩&#xff0c;如在 Huffman 编码中使用。它是根据字符出现的频率来构造的&#xff0c;频率越高的字符越靠近树的根&#xff0c;频率低的字符则在较深的节点上。其核心思想是通过构建一…...

wax到底是什么意思

在很久很久以前&#xff0c;人类还没有诞生文字之前&#xff0c;人类就产生了语言&#xff1b;在诞生文字之前&#xff0c;人类就已经使用了语言很久很久。 没有文字之前&#xff0c;人们的语言其实是相对比较简单的&#xff0c;因为人类的生产和生活水平非常低下&#xff0c;…...

笔记:使用ST-LINK烧录STM32程序怎么样最方便?

一般板子在插件上&#xff0c; 8脚 3.3V;9脚 CLK;10脚 DIO;4脚GND ST_Link 19脚 3.3V;9脚 CLK;7脚 DIO;20脚 GND 烧录软件&#xff1a;ST-LINK Utility&#xff0c;Keil_5; ST_Link 接口针脚定义&#xff1a; 按定义连接ST_Link与电路板&#xff1b; 打开STM32 ST-LINK Uti…...

数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)

一、数据集 二、导入数据 三、K-Means聚类 数据说明:提供一组数据,含体重、胆固醇、性别。 分析目标:找到这组数据中需要治疗的群体供后续使用。 一、数据集 点击下载数据集 二、导入数据 三、K-Means聚类 Ending, congratulations, youre done....

Python在数据科学领域的深度应用:从数据处理到机器学习模型构建

Python在数据科学领域的深度应用:从数据处理到机器学习模型构建 在当今大数据与人工智能蓬勃发展的时代,Python凭借其简洁的语法、强大的库支持和活跃的社区,已成为数据科学家和工程师的首选编程语言。本文将深入探讨Python在数据科学领域的应用,从数据预处理、探索性分析…...

海外问卷调查渠道查,具体运营的秘密

相信只要持之以恒并逐渐掌握技巧&#xff0c;每一位调查人在踏上征徐之时都会非常顺利的。并在日后的职业生涯中拥有捉刀厮杀的基本技能&#xff01;本文会告诉你如何做好一个优秀的海外问卷调查人。 在市场经济高速发展的今天&#xff0c;众多的企业为了自身的生存和发展而在…...