当前位置: 首页 > news >正文

ChatGPT-4o和ChatGPT-4o mini的差异点

在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式,深入解析两者之间的不同点。


一、性能差异

ChatGPT-4o:全能型语言模型

  • 多模态处理能力:ChatGPT-4o不仅限于文本处理,更能够实时处理和生成文本、音频及图像等多种模态的数据。这一功能使得它在复杂场景下的应用更加广泛,如图像分析、语音识别等。

  • 增强的实时推理能力:模型在实时处理和推理能力上显著提升,能够更快速、准确地响应用户的复杂查询和需求。其平均响应时间仅为320毫秒,与人类对话速度相当。

  • 非英语语言能力:ChatGPT-4o展现了出色的非英语语言处理能力,进一步拓宽了其全球应用范围。

ChatGPT-4o Mini:经济实惠的入门级选择

  • 成本效益:作为ChatGPT-4o的简化版,ChatGPT-4o Mini在保持一定性能的同时,大幅降低了运行成本。其定价为每百万token输入15美分、输出60美分,比GPT-3.5 Turbo便宜超过60%。

  • 文本与视觉支持:尽管体积较小,但ChatGPT-4o Mini依然支持文本和视觉输入/输出,并计划在未来支持更多数据类型,如视频和音频。

  • 学术基准测试表现:在MMLU评估中,ChatGPT-4o Mini获得了82%的得分,优于部分大型模型,展现了其在文本智能和多模态推理方面的能力。


 

二、应用场景

ChatGPT-4o:大型企业与研究机构的理想选择

  • 复杂任务处理:大型企业可以利用ChatGPT-4o进行客户服务自动化、高级内容创建、复杂数据分析等任务。其卓越的语言处理能力和多模态支持,使其成为进行高级AI研究和开发的首选工具。

  • 创新应用:在教育、医疗、娱乐等领域,ChatGPT-4o通过交互式音频反馈和视觉辅助工具,提供沉浸式的学习体验、更高效的医患沟通以及革命性的娱乐方式。

ChatGPT-4o Mini:初创企业与中小企业的得力助手

  • 成本敏感型应用:对于预算有限的企业,ChatGPT-4o Mini提供了经济实惠的AI解决方案。它适用于自动回复系统、内容推荐引擎等场景,帮助企业在有限的资源下实现智能化升级。

  • 广泛任务支持:从简单的文本处理到初步的图像分析,ChatGPT-4o Mini以其低成本和低延迟,支持一系列广泛的任务,满足企业的多样化需求。


三、总结

ChatGPT-4o与ChatGPT-4o Mini虽然同属ChatGPT系列,但各自在性能、成本和应用场景上展现出独特的优势。ChatGPT-4o以其卓越的多模态处理能力和实时推理能力,成为大型企业与研究机构的强大助力;而ChatGPT-4o Mini则以其经济实惠和灵活性,成为初创企业与中小企业的理想选择。OpenAI通过这两款模型,进一步推动了人工智能技术的普及与创新,为各行各业带来了前所未有的机遇与挑战。

【关于我】:

我是老六哥:工作于国内互联网大厂的P8程序员,现专注于教会更多的人如何将AI打造为自己的个人工作助理。

 

 

相关文章:

ChatGPT-4o和ChatGPT-4o mini的差异点

在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式&#xff0…...

SQL进阶实战技巧:某芯片工厂设备任务排产调度分析 | 间隙分析技术应用

目录 0 技术定义与核心原理 1 场景描述 2 数据准备 3 间隙分析法 步骤1:原始时间线可视化...

【力扣】438.找到字符串中所有字母异位词

AC截图 题目 思路 我一开始是打算将窗口内的s子字符串和p字符串都重新排序&#xff0c;然后判断是否相等&#xff0c;再之后进行窗口滑动。不过缺点是会超时。 class Solution { public:vector<int> findAnagrams(string s, string p) {vector<int> vec;if(s.siz…...

2024具身智能模型汇总:从训练数据、动作预测、训练方法到Robotics VLM、VLA

前言 本文一开始是属于此文《GRAPE——RLAIF微调VLA模型&#xff1a;通过偏好对齐提升机器人策略的泛化能力》的前言内容之一(该文发布于23年12月底)&#xff0c;但考虑到其重要性&#xff0c;加之那么大一张表格 看下来 阅读体验较差&#xff0c;故抽出取来独立成文且拆分之 …...

Day33【AI思考】-函数求导过程 的优质工具和网站

文章目录 **函数求导过程** 的优质工具和网站**一、动态图形工具**1. **Desmos&#xff08;网页端&#xff09;**2. **GeoGebra&#xff08;全平台&#xff09;** **二、分步推导工具**3. **Wolfram Alpha&#xff08;网页/App&#xff09;**4. **Symbolab&#xff08;网页/App…...

【URL】一个简单基于Gym的2D随机游走环境,用于无监督强化学习(URL)

import gym from gym import spaces import numpy as np import pygameclass RandomWalk2DEnv(gym.Env):def __init__(self):super(RandomWalk2DEnv, self).__init__()# 定义状态空间为2D坐标&#xff08;x, y&#xff09;self.x_min, self.x_max -10, 10 # 更新尺寸为 (-10,…...

【VM】VirtualBox安装ubuntu22.04虚拟机

阅读本文之前&#xff0c;请先根据 安装virtualbox 教程安装virtulbox虚拟机软件。 1.下载Ubuntu系统镜像 打开阿里云的镜像站点&#xff1a;https://developer.aliyun.com/mirror/ 找到如图所示位置&#xff0c;选择Ubuntu 22.04.3(destop-amd64)系统 Ubuntu 22.04.3(desto…...

MySQL的GROUP BY与COUNT()函数的使用问题

在MySQL中&#xff0c;GROUP BY和 COUNT()函数是数据聚合查询中非常重要的工具。正确使用它们可以有效地统计和分析数据。然而&#xff0c;不当的使用可能会导致查询结果不准确或性能低下。本文将详细讨论 GROUP BY和 COUNT()函数的使用方法及常见问题&#xff0c;并提供相应的…...

C# 精炼题18道题(类,三木运算,Switch,计算器)

1.数组元素和 2.数组元素乘积 3.数组元素平均数 4.数组中最大值 5.数组中的偶数 6.数组中的阶乘 7.数组反转 8.字符串反转 9.回文字符串 10.检查回文 11.最小最大值 12.找素数 13.字符串中的最长无重复字符串 14.字符串去重 15.数组中计算两数之和 16.数字到字符…...

96,【4】 buuctf web [BJDCTF2020]EzPHP

进入靶场 查看源代码 GFXEIM3YFZYGQ4A 一看就是编码后的 1nD3x.php 访问 得到源代码 <?php // 高亮显示当前 PHP 文件的源代码&#xff0c;用于调试或展示代码结构 highlight_file(__FILE__); // 关闭所有 PHP 错误报告&#xff0c;防止错误信息泄露可能的安全漏洞 erro…...

数据库 - Sqlserver - SQLEXPRESS、由Windows认证改为SQL Server Express认证进行连接 (sa登录)

本文讲SqlServer Express版本在登录的时候&#xff0c; 如何由Windows认证&#xff0c;修改为Sql Server Express认证。 目录 1&#xff0c;SqlServer Express的Windows认证 2&#xff0c;修改为混合认证 3&#xff0c;启用sa 用户 4&#xff0c;用sa 用户登录 下面是详细…...

2025年02月02日Github流行趋势

项目名称&#xff1a;oumi 项目地址url&#xff1a;https://github.com/oumi-ai/oumi 项目语言&#xff1a;Python 历史star数&#xff1a;1416 今日star数&#xff1a;205 项目维护者&#xff1a;xrdaukar, oelachqar, taenin, wizeng23, kaisopos 项目简介&#xff1a;构建最…...

【数据分析】案例03:当当网近30日热销图书的数据采集与可视化分析(scrapy+openpyxl+matplotlib)

当当网近30日热销图书的数据采集与可视化分析(scrapy+openpyxl+matplotlib) 当当网近30日热销书籍官网写在前面 实验目的:实现当当网近30日热销图书的数据采集与可视化分析。 电脑系统:Windows 使用软件:Visual Studio Code Python版本:python 3.12.4 技术需求:scrapy、…...

如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?

我使用DeepSeek AI和Dexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中&#xff0c;我将逐步指导您如何构建像我一样的机器人。 DeepSeek 最近发布了R1&#xff0c;这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本&#xff0c;但增加…...

buu-jarvisoj_level0-好久不见30

嘶&#xff0c;我咋觉得这个也是栈溢出呢&#xff0c;找到读取的值&#xff0c;在再找到后门函数...

深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块

一、梯度消失 梯度消失的根本原因在于 激活函数的性质和链式法则的计算&#xff1a; 激活函数的导数很小&#xff1a; 常见的激活函数&#xff08;例如 Sigmoid 和 Tanh&#xff09;在输入较大或较小时&#xff0c;输出趋于饱和&#xff08;Sigmoid 的输出趋于 0 或 1&#xf…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.2 多维数组切片:跨步访问与内存布局

2.2 多维数组切片&#xff1a;跨步访问与内存布局 目录/提纲 #mermaid-svg-FbBIOMVivQfdX2LJ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-FbBIOMVivQfdX2LJ .error-icon{fill:#552222;}#mermaid-svg-FbBIOMVivQ…...

ResNet--深度学习中的革命性网络架构

一、引言 在深度学习的研究和应用中&#xff0c;网络架构的设计始终是一个关键话题。随着计算能力和大数据的不断提升&#xff0c;深度神经网络逐渐成为解决复杂任务的主流方法。然而&#xff0c;随着网络层数的增加&#xff0c;训练深度神经网络往往面临梯度消失或梯度爆炸的…...

TypeScript语言的语法糖

TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言&#xff0c;它在JavaScript的基础上添加了一些强类型的特性&#xff0c;使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中&#xff0c;不仅包含了静态类型、接口、枚举等强大的特性&…...

17.2 图形绘制4

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 17.2.5 线条样式 C#为画笔绘制线段提供了多种样式&#xff1a;一是线帽&#xff08;包括起点和终点处&#xff09;样式&#xff1b…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...