当前位置: 首页 > news >正文

概率论面试题1:玫瑰花

概率论面试题

1. 一个活动,n个女生手里拿着长短不一的玫瑰花,无序的排成一排,一个男生从头走到尾,试图拿更长的玫瑰花,一旦拿了一朵就不能再拿其他的,错过了就不能回头,问最好的策略?

答:首先确定概率模型,真的很难理解啊!下面这三行公式绕的脑壳疼,其实就是获取“拿到最长的玫瑰花”的最终条件被分解成为两个更容易求解的小条件,即:(1)抽到最长的玫瑰花的概率;(2)在确定最长玫瑰花位置的条件下选中该玫瑰花。

P=P(拿到最长的玫瑰花)=P(最长的玫瑰花⋅拿到该玫瑰花)=P(最长的玫瑰花)∗P(拿到该玫瑰花∣最长的玫瑰花)\begin{align} P&=P(拿到最长的玫瑰花)\\ &=P(最长的玫瑰花·拿到该玫瑰花)\\ &=P(最长的玫瑰花)*P(拿到该玫瑰花|最长的玫瑰花) \end{align} P=P(拿到最长的玫瑰花)=P(最长的玫瑰花拿到该玫瑰花)=P(最长的玫瑰花)P(拿到该玫瑰花最长的玫瑰花)

现在求取这两个小条件概率,第一条(1),即

P(最长的玫瑰花)=1nP(最长的玫瑰花) = \frac{1}{n} P(最长的玫瑰花)=n1

其中,n为玫瑰花的总数。

第二条非常头疼,这里要充分理解这个条件概率的价值,那便是我们已经知道了最长的玫瑰花在什么位置,那么这样的话就可以通过级数来解决这个问题,具体的图像就不画了,可以参考这个up主讲的视频,挺不错的,这里面的“排队”说法太顶了,直接粘贴图片了。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:图片搬运自上文所提的UP主的视频中,有兴趣的朋友可以自行观看,讲得很不错。

其中S便是用于进行后续判断的一个位置点,我们所需要的便是获取S点之后的大于1~S之间最大值的值,即:

P(拿到该玫瑰花∣最长的玫瑰花)=SS+SS+1+⋯+Sn−1=S∗(1S+1S+1+⋯+1n−1)=S∗∑i=Sn−11i\begin{align} P(拿到该玫瑰花|最长的玫瑰花)&=\frac{S}{S}+\frac{S}{S+1}+\quad\cdots\quad+\frac{S}{n-1}\\ &=S*(\frac{1}{S}+\frac{1}{S+1}+\quad\cdots\quad+\frac{1}{n-1})\\ &=S*\sum\limits_{i=S}^{n-1}\frac{1}{i} \end{align} P(拿到该玫瑰花最长的玫瑰花)=SS+S+1S++n1S=S(S1+S+11++n11)=Si=Sn1i1

这样的话,最后的P就为:

P=Sn∗∑i=Sn−11i=Sn∫Snn−1n1xdx\begin{align} P&=\frac{S}{n}*\sum\limits_{i=S}^{n-1}\frac{1}{i}\\ &=\frac{S}{n}\int_{\frac{S}{n}}^{\frac{n-1}{n}}\frac{1}{x}dx \end{align} P=nSi=Sn1i1=nSnSnn1x1dx

在这里插入图片描述

P=∑i=Sn−11i=1S+1S+1+⋯+1n−1=1n∗(1Sn+1S+1n+⋯+1n−1n)=1n∗∑i=Snn−1n1in=Sn∫Snn−1n1xdx\begin{align} P&=\sum\limits_{i=S}^{n-1}\frac{1}{i}\\ &=\frac{1}{S}+\frac{1}{S+1}+\quad\cdots\quad+\frac{1}{n-1}\\ &=\frac{1}{n}*(\frac{1}{\frac{S}{n}}+\frac{1}{\frac{S+1}{n}}+\quad\cdots\quad+\frac{1}{\frac{n-1}{n}})\\ &=\frac{1}{n}*\sum\limits_{i=\frac{S}{n}}^{\frac{n-1}{n}}\frac{1}{\frac{i}{n}}\\ &=\frac{S}{n}\int_{\frac{S}{n}}^{\frac{n-1}{n}}\frac{1}{x}dx \end{align} P=i=Sn1i1=S1+S+11++n11=n1(nS1+nS+11++nn11)=n1i=nSnn1ni1=nSnSnn1x1dx

1n便是每一个小条宽度,而高度则分别是1Sn、1S+1n⋯\frac{1}{n}便是每一个小条宽度,而高度则分别是\frac{1}{\frac{S}{n}}、\frac{1}{\frac{S+1}{n}}\quad\cdots n1便是每一个小条宽度,而高度则分别是nS1nS+11

图示如下:

在这里插入图片描述

总结

  学无止境,条件概率、黎曼积分、级数这些知识点都快忘干净了,慌张,抓紧补上吧。

相关文章:

概率论面试题1:玫瑰花

概率论面试题 1. 一个活动,n个女生手里拿着长短不一的玫瑰花,无序的排成一排,一个男生从头走到尾,试图拿更长的玫瑰花,一旦拿了一朵就不能再拿其他的,错过了就不能回头,问最好的策略&#xff1…...

【DGL】图分类

目录概述数据集定义Data LoaderDGL中的batched graph定义模型训练参考概述 除了节点级别的问题——节点分类、边级别的问题——链接预测之外,还有整个图级别的问题——图分类。经过聚合、传递消息得到节点和边的新的表征后,映射得到整个图的表征。 数据…...

时间复杂度的计算(2023-02-10)

时间复杂度的计算 时间复杂度的计算分为三大类&#xff1a;一层循环、二层循环和多层循环。 一层循环 1.找出循环趟数t及每轮循环i的变化值 2.确立循环停止的条件 3.得出t与i之间的关系 4.联立两式&#xff0c;得出结果 eg: void fun(int n) {int i0;while (i*i*i<n)i;…...

测试开发之Django实战示例 第六章 追踪用户行为

第六章 追踪用户行为在之前的章节里完成了小书签将外站图片保存至本站的功能&#xff0c;并且实现了通过jQuery发送AJAX请求&#xff0c;让用户可以对图片进行喜欢/不喜欢操作。这一章将学习如何创建一个用户关注系统和创建用户行为流数据&#xff0c;还将学习Django的信号框架…...

红米9a手动root方法

简介 已知红米6A/6/9/9A/9C/10A机器都可以快速解锁BL&#xff0c;无任何变砖风险 并且秒解锁BL后和官方解锁一样&#xff0c;无任何其他不良影响。推荐大家使用官网解锁&#xff0c;需要等待7天。 ​ BootLoader BootLoader是在操作系统内核运行之前运行的一段小程序。其实…...

Open3D 点云最小二乘法拟合平面(剔除噪声,Python版本)

除了诱惑之外,我可以抵抗任何事物。 ----王尔德 文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 这个算法的思路很简单,就是通过剔除一些异常点来拟合更为合适的平面,具体过程如下所示: 1、首先使用最小二乘法拟合一个平面系数的初值。 2、计算所有有效点到拟合…...

【SpringBoot】简述springboot项目启动数据加载内存中的三种方法

一、前言一般来说&#xff0c;SpringBoot工程环境配置放在properties文件中&#xff0c;启动的时候将工程中的properties/yaml文件的配置项加载到内存中。但这种方式改配置项的时候&#xff0c;需要重新编译部署&#xff0c;考虑到这种因素&#xff0c;今天介绍将配置项存到数据…...

【一文速通】各种机器学习算法的特点及应用场景

近邻 (Nearest Neighbor)KNN算法的核心思想是&#xff0c;如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别&#xff0c;则该样本也属于这个类别&#xff0c;并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定…...

多传感器融合定位十四-基于图优化的定位方法

多传感器融合定位十四-基于图优化的定位方法1. 基于图优化的定位简介1.1 核心思路1.2 定位流程2. 边缘化原理及应用2.1 边缘化原理2.2 从滤波角度理解边缘化3. 基于kitti的实现原理3.1 基于地图定位的滑动窗口模型3.2 边缘化过程4. lio-mapping 介绍4.1 核心思想4.2 具体流程4.…...

PHP基于TCPDF第三方类生成PDF文件

最近在研发招聘的系统 遇到了这个问题 转换pdf 折腾了很久 分享一下PHP基于TCPDF第三方类生成PDF文件最近遇到一个需求&#xff0c;需要根据数据库的字段生成表格式的PDF文件并发送邮箱第一步、我们先去官网上面去下载tcpdf的类&#xff1a;http://www.tcpdf.org/或者是从githu…...

SpringCloud(19):Sentinel定义资源的方式

Sentinel除了基本的定义资源的方式之外,还有其他的定义资源的方式,具体如下: 抛出异常的方式定义资源返回布尔值方式定义资源异步调用支持注解方式定义资源主流框架的默认适配1 抛出异常的方式定义资源 Sentinel中的SphU包含了try-catch风格的API。用这种方式,当资源发生了…...

前端 ES6 之 Promise 实践应用与控制反转

Promise 主要是为解决程序异步处理而生的&#xff0c;在现在的前端应用中无处不在&#xff0c;已然成为前端开发中最重要的技能点之一。它不仅解决了以前回调函数地狱嵌套的痛点&#xff0c;更重要的是它提供了更完整、更强大的异步解决方案。 同时 Promise 也是前端面试中必不…...

LightGBM

目录 1.LightGBM的直方图算法(Histogram) 直方图做差加速 2.LightGBM得两大先进技术(GOSS&EFB) 2.1 单边梯度抽样算法(GOSS) 2.2 互斥特征捆绑算法(EFB) 3.LightGBM得生长策略(leaf-wise) 通过与xgboost对比&#xff0c;在这里列出lgb新提出的几个方面的技术 1.Ligh…...

Science:北京脑研究中心李莹实验室揭示性满足感的分子机制

短暂的社交经历&#xff08;例如&#xff0c;性经历&#xff09;可导致内部状态的长期变化并影响社会行为&#xff0c;如交配、攻击。例如&#xff0c;在成功交配射精后&#xff0c;许多物种迅速表现出对交配倾向的抑制有数小时、数天或更长时间&#xff0c;这种效应称为性满足…...

Element UI框架学习篇(三)

Element UI框架学习篇(三) 实现简单登录功能(不含记住密码) 1 准备工作 1.1 在zlz包下创建dto包,并创建userDTO类(传输对象) package com.zlz.dto;import lombok.Data;/* DTO 数据传输对象 用户表的传输对象 调用控制器传参使用 VO 控制器返回的视图对象 与页面对应 PO 数据…...

尚硅谷的尚融宝项目

先建立一个Maven springboot项目 进来先把src删掉&#xff0c;因为是一个父项目&#xff0c;我们删掉src之后&#xff0c;pom里配置的东西&#xff0c;也能给别的模块使用。 改一下springboot的版本号码 加入依赖和依赖管理&#xff1a; <properties><java.versi…...

12 Day:内存管理

前言&#xff1a;今天我们要完成我们操作系统的内存管理&#xff0c;以及一些数据结构和小组件的实现&#xff0c;在此之前大家需要了解我们前几天一些重要文件的内存地址存放在哪&#xff0c;以便我们更好的去编写内存管理模块 一&#xff0c;实现ASSERT断言 不知道大家有没有…...

linux基本功系列之lsof命令实战

文章目录前言一. lsof命令介绍二. 语法格式及常用选项三. 参考案例3.1 显示系统打开的文件3.2 查找某个文件相关的进程3.3 列出某个用户打开的文件信息3.4 列出某个程序进程所打开的文件信息3.5 查看某个进程号打开的文件3.6 列出所有的网络连接3.7 列出谁在使用某个端口3.8 恢…...

基础篇:02-SpringCloud概述

1.SpringCloud诞生 基于前面章节&#xff0c;我们深知微服务已成为当前开发的主流技术栈&#xff0c;但是如dubbo、zookeeper、nacos、rocketmq、rabbitmq、springboot、redis、es这般众多技术都只解决了一个或一类问题&#xff0c;微服务并没有一个统一的解决方案。开发人员或…...

【软件测试】软件测试工作上95%会遇到的问题,你遇到多少?

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 1、测试负责人要进行…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...