ChatGPT Prompting开发实战(五)
一、如何编写有效的prompt
对于大语言模型来说,编写出有效的prompt能够帮助模型更好地理解用户的意图(intents),生成针对用户提问来说是有效的答案,避免用户与模型之间来来回回对话多次但是用户不能从LLM那里得到有意义的反馈。本文通过具体案例演示解析两个能够帮助写出有效的prompts的基本原则。案例使用来自OpenAI的模型“gpt-3.5-turbo”并调用相关的chat API:
二、编写清晰和有具体的指令(instructions)的prompt
要点描述:
使用分割符来清楚标明模型输入的不同部分,可以使用的分割符包括:```, """, < >, <tag> </tag>, :等等。
prompt示例如下:
text = f"""
You should express what you want a model to do by \
providing instructions that are as clear and \
specific as you can possibly make them. \
This will guide the model towards the desired output, \
and reduce the chances of receiving irrelevant \
or incorrect responses. Don't confuse writing a \
clear prompt with writing a short prompt. \
In many cases, longer prompts provide more clarity \
and context for the model, which can lead to \
more detailed and relevant outputs.
"""
prompt = f"""
Summarize the text delimited by triple backticks \
into a single sentence.
```{text}```
"""
response = get_completion(prompt)
print(response)
打印输出结果如下:
To guide a model towards the desired output and reduce irrelevant or incorrect responses, it is important to provide clear and specific instructions, which can be achieved through longer prompts that offer more clarity and context.
要点描述:
如何请求LLM给出一个结构化的输出,常见的结构化输出格式有JSON,HTML等。
prompt示例如下:
prompt = f"""
Generate a list of three made-up book titles along \
with their authors and genres.
Provide them in JSON format with the following keys:
book_id, title, author, genre.
"""
response = get_completion(prompt)
print(response)
打印输出结果如下:
要点描述:
请求模型检查输入文本是否满足给定的条件。
prompt示例如下(能够满足给定条件):
text_1 = f"""
Making a cup of tea is easy! First, you need to get some \
water boiling. While that's happening, \
grab a cup and put a tea bag in it. Once the water is \
hot enough, just pour it over the tea bag. \
Let it sit for a bit so the tea can steep. After a \
few minutes, take out the tea bag. If you \
like, you can add some sugar or milk to taste. \
And that's it! You've got yourself a delicious \
cup of tea to enjoy.
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it contains a sequence of instructions, \
re-write those instructions in the following format:
Step 1 - ...
Step 2 - …
…
Step N - …
If the text does not contain a sequence of instructions, \
then simply write \"No steps provided.\"
\"\"\"{text_1}\"\"\"
"""
response = get_completion(prompt)
print("Completion for Text 1:")
print(response)
打印输出结果如下:
prompt示例如下(不能满足给定条件):
text_2 = f"""
The sun is shining brightly today, and the birds are \
singing. It's a beautiful day to go for a \
walk in the park. The flowers are blooming, and the \
trees are swaying gently in the breeze. People \
are out and about, enjoying the lovely weather. \
Some are having picnics, while others are playing \
games or simply relaxing on the grass. It's a \
perfect day to spend time outdoors and appreciate the \
beauty of nature.
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it contains a sequence of instructions, \
re-write those instructions in the following format:
Step 1 - ...
Step 2 - …
…
Step N - …
If the text does not contain a sequence of instructions, \
then simply write \"No steps provided.\"
\"\"\"{text_2}\"\"\"
"""
response = get_completion(prompt)
print("Completion for Text 2:")
print(response)
打印输出结果如下:
相关文章:
ChatGPT Prompting开发实战(五)
一、如何编写有效的prompt 对于大语言模型来说,编写出有效的prompt能够帮助模型更好地理解用户的意图(intents),生成针对用户提问来说是有效的答案,避免用户与模型之间来来回回对话多次但是用户不能从LLM那里得到有意义的反馈。本文通过具体…...
MySQL——DQL union合并、limit限制与DDL建表和删表
一、Union 合并 union:是实现两个查询结果的合并。 例如:当我们查询员工名字为manager 和 salesman的员工名字和 工作? select e.ename,e.job from emp e where e.jobmanager or e.job salesman; select e.ename,e.job from emp e where e.job in(man…...
Java“牵手”唯品会商品列表数据,关键词搜索唯品会商品数据接口,唯品会API申请指南
唯品会商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取唯品会商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问唯品会商城的网页来获取商品详情信息。以下是两种常用方法的介…...
Springboot整合JWT完成验证登录
目录 一、引入依赖二、JwtUtil 代码解读三、LoginController 代码解读四、整体代码五、结果展示 一、引入依赖 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></depende…...
centos7 下使用docker安装常见的软件:Redis
关于docker的基础知识,请见《别在说自己不知道docker了,全文通俗易懂的给你说明白docker的基础与底层原理》 在自己学习的过程中经常会需要动手安装一下常见的工具,本篇就手把手带你用docker安装一遍。 jdk安装 如果先要更换之前的jdk从第…...
sql:SQL优化知识点记录(十五)
(1)MySQL主从复制 我们这里配置一Windows上的MySql做主机,Linux上的MySql做从机,搭建一主一从 测试以下是否能够拼通:从Linux上:167,连接Windows的165 从Windows的165 连接Linux上:…...
vue3+ts 分享海报
安装依赖1. npm install html2canvas --save<div class"flex-box"><div><div v-for"(item,index ) in from.list" :key"index" click"actvieFuntion(index)"><div>{{item}}</div><div :class"…...
Ubuntu23.10将推出全磁盘加密功能,提高系统安全性
Canonical 宣布其即将推出的 Ubuntu 23.10(Mantic Minotaur)将引入基于 TPM 的全磁盘加密的初步支持。这个特性将利用系统可信平台模块(TPM),在系统级别上进行全磁盘加密,从而提高系统的安全性。 但需要注…...
防火墙的设置主要是为了防范什么
防火墙的设置主要是为了防范网络攻击和数据泄露。随着互联网的普及和信息化的加速,网络安全问题越来越受到人们的关注。其中,防火墙是一种常见的网络安全设备,其设置的重要性也日益凸显。 防火墙的设置主要是为了防范什么 防火墙的设置主要目…...
Vim9和其他软件的文本复制、粘贴
大家都知道:在Vim9中使用y和p命令来进行文本的复制和粘贴,今天我来说一说Vim和其他软件之间的文本复制、粘贴操作。 Vim9和其他软件进行复制、粘贴,其原理就是通过系统剪贴板作为中介来执行操作。 一、从Vim9复制文本内容 按住鼠标左键滑出…...
MySQL学习5:事务、存储引擎
事务 简介 事务是一组数据库操作的执行单元,它要么完全执行,要么完全不执行。事务是确保数据库中的数据一致性和完整性的重要机制之一。 事务具有以下四个特性(称为ACID特性): 原子性(Atomicity…...
redis如何保证接口的幂等性
背景 如何防止接口中同样的数据提交,以及如何保证消息不被重复消费,这些都是shigen在学习的过程中遇到的问题。今天,趁着在学习redis的间隙,我写了一篇文章进行简单的实现。 注意:仅使用于单机的场景,对于…...
避坑之路 —— 前后端 json 的注意问题
当我们在进行开发项目的时候,在前后端需要进行数据之间的传输,那么就会需要到json。而json算是字符串中的一种 1.先说一下前端的, 其实这两种都是表示前端希望能收到后端json这样的数据格式,那么我们在后端就需要注意将数据进行转换为json进…...
[构建 Vue 组件库] 小尾巴 UI 组件库 —— 横向商品卡片(仿淘宝)
文章归档于:https://www.yuque.com/u27599042/row3c6 组件库地址 npm:https://www.npmjs.com/package/xwb-ui?activeTabreadmegitee:https://gitee.com/tongchaowei/xwb-ui 下载 npm i xwb-ui配置 按需导入 import {组件名 } from xwb-…...
【Python】Python实现五子棋游戏(带可视化界面)【独一无二】
👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…...
用Maloja创建音乐收听统计数据
什么是 Maloja ? Maloja 是简单的自托管音乐记录数据库,用于创建个人收听统计数据。没有推荐,没有社交网络,没有废话。Maloja 是一个跟踪您一段时间内的收听习惯的工具。 官方演示站点:https://maloja.krateng.ch/ 导出…...
GRU门控循环单元
GRU 视频链接 https://www.bilibili.com/video/BV1Pk4y177Xg?p23&spm_id_frompageDriver&vd_source3b42b36e44d271f58e90f86679d77db7Zt—更新门 Rt—重置门 控制保存之前一层信息多,还是保留当前神经元得到的隐藏层的信息多。 Bi-GRU GRU比LSTM参数少 …...
使用Puppeteer构建博客内容的自动标签生成器
导语 标签是一种用于描述和分类博客内容的元数据,它可以帮助读者快速找到感兴趣的主题,也可以提高博客的搜索引擎优化(SEO)。然而,手动为每篇博客文章添加合适的标签是一件费时费力的工作,有时候也容易遗漏…...
大数据分析案例-基于随机森林算法构建二手房价格预测模型
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
SLAM从入门到精通(ROS安装)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 ROS科研上面用的多,实际生产其实用的也不少。它本身还是很好的应用框架。当然,它对于很多初学的同学来说还是很友好的。学完…...
Linux 下spi设备驱动
参考: Linux kernel 有关 spi 设备树参数解析 Linux kernel 有关 spi 设备树参数解析 - 走看看 Linux SPI驱动框架(1)——核心层 Linux SPI驱动框架(1)——核心层_linux spi驱动模型_绍兴小贵宁的博客-CSDN博客 Linux SPI驱动框架(2)——控制器驱动层 Linux SPI驱…...
一:图形的位置和尺寸测量
绘制的基本要素: onDraw(Canvas):是用来重写的 Canvas:实际执行绘制的 Paint:调整粗细和颜色等 坐标系:以屏幕左上角为原点,向右、向下为正向数值的坐标系 尺寸单位:在绘制过程中所有的尺寸单位都是px…...
rtthread下基于spi device架构MCP25625驱动
1.CAN驱动架构 由于采用了RTT的spi device架构,不能再随心所遇的编写CAN驱动 了,之前内核虽然采用了RTT内核,但是驱动并没有严格严格按RTT推荐的架构来做,这次不同了,上次是因为4个MCP25625挂在了4路独立的SPI总线上&…...
Open3D 点云投影到圆柱(python详细过程版)
目录 一、算法原理1、圆柱方程2、投影原理二、代码实现三、结果展示1、原始点云2、投影结果四、参考链接一、算法原理 1、圆柱方程 圆柱方程可以表示为: ( x − x...
Unity实战(10):如何将某个相机的画面做成贴图(RenderTexture)
目录 前言 一、创建物体、材质与相机 二、将RenderTexture赋给材质 2.1 修改rt1的一些属性 2.2 将rtMat1材质的shader改为Unlit/Texture,并将rt1赋给这个材质 三、效果呈现 前言 本文记录如何将某个相机的画面做成贴图,即游戏某些场景中小地图做法…...
STL- 函数对象
1 函数对象 1.1 函数对象概念 概念: 重载函数调用操作符的类,其对象常称为函数对象函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类,不是一个函数 1.2 函数对象…...
前端 JS 经典:上传文件
重点:multipart/form-data 后端识别上传类型必填 1. form 表单上传 <!-- enctype"multipart/form-data" 这个必填 --> <form action"http://127.0.0.1:8080/users/avatar" method"post" enctype"multipart/form-data…...
数据分析面试
数据分析相关的职位面试可以拆解为以下三块: 1)技术基础 2)项目经验提问 3)业务问题 【数据分析与挖掘(二)】面试题汇总(附答案)_数据分析面试常见问题及答案_youthlost的博客-CSDN博客 我裸辞去面试p…...
Open3D(C++) 整体最小二乘拟合平面
目录 一、算法原理1、算法过程2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。 一、算法原理 1、算法过程 最小二乘拟合平面认为点云数据系数矩阵不存在误差,然而由于观测条件的限制,观测向量、系数矩阵都有可能存在误差,那么最小二乘方法就不再是最…...
【android12-linux-5.1】【ST芯片】【RK3588】【LSM6DSR】HAL源码分析
一、环境介绍 RK3588主板搭载Android12操作系统,内核是Linux5.10,使用ST的六轴传感器LSM6DSR芯片。 二、芯片介绍 LSM6DSR是一款加速度和角速度(陀螺仪)六轴传感器,还内置了一个温度传感器。该芯片可以选择I2C,SPI通讯,还有可编程终端,可以后置摄像头等设备,功能是很…...
做的网站被挂马/手机免费建网站
Delphi APP 開發入門(十)REST Client 開發 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀次數:3116 發表時間:2014/08/27tags: 行動開發 教學 App Delphi XE6 Android iOSDelphi APP 開…...
阿里云简单网站建设/快速排名工具免费查询
最近又遇到了JacvaScript中的call()方法和apply()方法,而在某些时候这两个方法还确实是十分重要的,那么就让我总结这两个方法的使用和区别吧。 1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法。 2. 相同点:这两…...
网站建设中iis/交换友情链接推广法
逆滤波法在图像复原中的应用吴雪垠;吴谨;张鹤【期刊名称】《信息技术》【年(卷),期】2011(000)010【摘要】针对逆滤波图像复原算法进行研究,在已知系统退化模型的情况下,对退化图像使用逆滤波算法进行复原,再对复原后的图像进行平滑处理,使其更接近于原始图像.文中使用VisualC6…...
建设微信商城网站制作/典型的口碑营销案例
线性判别 文章目录线性判别1 线性判别与非线性判别2 样本集的线性可分性3 非线性判别问题转化成线性判别问题4 多分类线性判别4.1 绝对可分方式4.2 两两可分方式4.3 最大值可分方式5 线性判别函数的几何意义1 线性判别与非线性判别 我们知道,要实现模式识别&#x…...
wordpress外贸B2C建站/百度账号登录入口网页版
GCC的编译通用步骤为: 第一、在源文件目录(source)之外建立一个临时目录(build)和一个安装目录(bin)。 第二、定位到临时目录,在临时目录中调用SOURCE目录中的configure命令再在此命令后面加上你想要的参数其中必需有定…...
网站开发培训学院/seo全网营销公司
使用Linux shell是我每天的基本工作,但我经常会忘记一些有用的shell命令和l技巧。当然,命令我能记住,但我不敢说能记得如何用它执行某个特定任务。于是,我开始在一个文本文件里记录这些用法,并放在我的Dropbox里&#…...