stable diffusion的模型选择,采样器选择,关键词
一、Stable Diffusion的模型选择:
模型下载地址:https://civitai.com/,需要科学上网。
- Deliberate:全能模型,prompt越详细生成的图片质量越好
- Realistic Vision:现实模型,生成仿真式图片,它的真实性搭配任何人物的Lora,就可以生成照片级的作品
- DreamShaper:V5版本有真实感和噪声抵消的优化,模型初衷是为了肖像画,善于复杂的细节和鲜艳的色彩,梦幻的插画效果
- Counterfeit:高质量的动漫风格模型,建议搭配easy negative,能生成精确和令人惊讶的结果,动漫创作者很适合
- MeinaMix:生成动漫人物效果非常好,较少提示下,完成出色的艺术创作
- bad-picture negative embedding for ChilloutMix:咳咳咳
二、Stable Diffusion十几种采样器的区别:
采样是指图像去噪的过程,从而产生清晰的图,理论上采样步数越多图片细节越多,但过多的采样会造成过拟合。
- Euler:欧拉方法最简答直接的采样器,非常受欢迎
- Heun:改进欧拉方法,提高了精度但耗时比欧拉方法多一倍
- LMS:线性多步法,速度与质量与欧拉方法相差不多
- 以下三个是常微分方程(ODE)的老式求解器,已经存在一百多年了,推荐设置步数在20-30之间
- DDIM:去噪扩散隐式模型,是最早为Stable Diffusion设计的采样器之一,
- PLMS:伪线性多步法,是LMS更新更快的替代方案,已落后,不再广泛使用。
- DPM:2022年新发布的采样器,优秀的收敛和图像质量。
- DPM2:相比DPM更准确但更慢一些
- DPM++:是对DPM系列的改进
- DPM fast:我感觉没存在的必要,除非步数设置在40+,否则很难跑出能看的图
- UniPC:新开发的采样器,收敛速度略慢于欧拉方法,但质量相当,推荐使用较高的步数
说明:
- -a:后缀带a的采样器为祖先采样器,区别在于它们会在每步中添加随机噪声,如果需要出更多元的图像,可以选择带a的采样器。如果在意可控性、稳定性、可重现的图像,就要避免选择带a的方法。所有的祖先采样器都是不收敛的,所以在相同参数和种子的情况下,生成的图片会有不同
- -karras:所有后缀带有karras的采样器是使用了karras噪声调度,使用karras噪声会产生更好的图片质量
建议:
- 想要快速、融合、新颖且质量不错的东西,最好的选择是DPM++ 2M karras、UniPC,搭配20-30步数
- 想要高质量、且不关心收敛性,推荐DPM++ SDE karras,搭配8-12步数;DDIM搭配10-15步数
- 简单图像,Euler,Heun是不错的选择,推荐设置步数在20-30之间
三、prompt提示词权重设置
a dog, a cat:越靠前的提示词,权重越高
- 加权重方法——小括号():(a dog), a cat:一个小括号相当于权重乘1.1倍,两个小括号相当于乘1.1倍后再乘1.1倍,小括号越多权重越高
- 去权重方法——中括号[]:[a dog], a cat:相当于除1.1倍,多个中括号以此类推
调整权重更方便的写法:(prompt1:数字),(prompt2:数字)——(a dog:0.5),(a cat:1.5)——0.5权重狗,1.5权重猫
四、prompt提示词六要素:
推荐两个提示词网站:
元素法典
Danbooru 标签超市
人物,画风,场景,环境,画质,视角
1、人物:
- 性别:1 girl, 2 boys, loli, cat girl
- 服饰:long sleeves, gloves coat, bangle, armband
- 发型:long hair, bangs, black hair,
- 五官:cat ears, small eyes, big mouth, blue eyes
- 表情:smile, open mouth, tears, blush
- 动作:standing, lying, head tilt, tying hair
2、画风
- 插画风:illustration, painting, paintbrush
- 二次元:anime, comic, game CG,
- 写实系:photorealistic, realistic, photograph
- 复古风:close-up,upper body, pov, retro artstyle
- 手绘风:traditional media
- 赛博朋克:cyberpunk,
3、场景
- 室内室外:indoor outdoor
- 大场景:forest city, street, field, garden, village
- 小细节:tree, bush, flower, tower, fences
4、环境
- 白天黑夜:day night
- 时段:morning, sunset
- 光线:sunlight, bright, dark
- 天空:blue sky, starry sky, shooting star, full moon
5、画质
- 正向高画质:highres, absurdres, official art, best quality, 8k,masterpiece, game cg, original
- 负向低品质:lowres, parody, scan, parody, bad anatomy, bad hands, fewer digits, extra digit, missing arms, watermark, signature, text,
6、视角
- 距离:close-up, distant
- 人物比例:full body, upper body
- 观察角度:from above, from below, view of back, form side
- 镜头类型:wide shot, Sony A7 3, fish eye
相关文章:
stable diffusion的模型选择,采样器选择,关键词
一、Stable Diffusion的模型选择: 模型下载地址:https://civitai.com/,需要科学上网。 Deliberate:全能模型,prompt越详细生成的图片质量越好Realistic Vision:现实模型,生成仿真式图片&#…...
BI零售数据分析:以自身视角展开分析
随着零售业务不断扩展,市场竞争不断加剧,各层级的销售管理人员都急需一张能快速查看销售数据分析报表,能从中知道自己管辖内的业务最近或过去的情况,并依次为依据科学优化销售管理措施。这就要求零售数据分析报表信息足够多、数据…...
Maven 使用教程(三)
一、如何使用外部依赖项? 您可能已经注意到POM中的一个dependencies元素,我们一直在使用它作为示例。事实上,您一直在使用外部依赖项,但在这里我们将更详细地讨论它是如何工作的。有关更全面的介绍,请参阅我们的依赖机…...
行秋找工作的记录
2023-10-17 15:35-16:00 中移(苏州)研发中心面试 问了项目,还有一些我没准备到的Java八股文:Java类的加载过程,发射机制,redis存储结构,二叉平衡树等。但我也都没回答上来。应该无了。 2023-1…...
vue项目打包,使用externals抽离公共的第三方库
封装了一个插件,用来vue打包抽离公共的第三方库,使用unplugin进行插件开发,vite对应的功能使用了vite-plugin-externals进行二次开发 github地址 npm地址 hfex-auto-externals-plugin 自动注入插件,使用 unplugin 和 html-webpack-plugin进…...
九阳真经之各大厂校招
大学计算机系的同学要怎么努力才能校招进大厂? 秋招的大公司非常多,也是非常好的,赶上了秋招,你基本工作就敲定了,在整个应届毕业生的人群中你就占据很大的优势了。 如何准备应届校招? 一、做好规划,把…...
Go语言入门心法(五): 函数
Go语言入门心法(一): 基础语法 Go语言入门心法(二): 结构体 Go语言入门心法(三): 接口 Go语言入门心法(四): 异常体系 Go语言入门心法(五): 函数 一: go语言函数认知 函数相关认知升维:函数的功能就是把相对独立的某个相同或者时类型的功能抽象处理,使之成为一个…...
gitignore文件的语法规则
行注释:以"#"符号开头的行表示注释,Git会忽略这些行。空行:空行会被忽略。文件和目录规则: 可以使用通配符来匹配文件和目录。常用的通配符有: “*”:匹配0个或多个字符。“?”:匹配…...
vscode提示扩展主机在过去5分钟内意外终止了3次,解决方法
参考链接: https://code.visualstudio.com/blogs/2021/02/16/extension-bisect https://code.visualstudio.com/docs/setup/uninstall#_clean-uninstall 使用vscode打开jupyter notebook记事本时,窗口右下角提示扩展主机在过去5分钟内意外终止了3次 而…...
【算法挨揍日记】day16——525. 连续数组、1314. 矩阵区域和
525. 连续数组 525. 连续数组 题目描述: 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。 解题思路: 本题的元素只有0和1,根据题目意思,我们可以把题目看成找一段最…...
k8s-13 存储之secret
Secret 对象类型用来保存敏感信息,例如密码、OAuth 令牌和 ssh key。 敏感信息放在 secret 中比放在 Pod 的定义或者容器镜像中来说更加安全和灵活 。 Pod 可以用两种方式使用 secret:作为 volume 中的文件被挂载到 pod 中的一个或者多个容器里 当 kubelet 为 pod 拉…...
什么是高阶成分(HOC)
高阶组件(Higher-Order Component,HOC)是一种在React中用于组件复用和逻辑抽象的设计模式。它本质上是一个函数,接受一个组件作为参数,并返回一个新的组件。 1. HOC的作用: HOC允许我们在不修改原始组件的…...
深度学习硬件配置推荐
目录 1. 基础推荐2. GPU显存与内存是一个1:4的配比?3. deep learning 入门和kaggle比赛4. 有些 Kaggle 比赛数据集很大,可能需要更多的 GPU 显存,请推荐显存4. GDDR6和HBM25. HDD 或 SATA SSD1. 基础推荐 假设您作为一个深度学习入门学者的需求,以下是一份推荐的电脑硬件配…...
数仓建设(一)
想了想,我们的数仓的建设是基于大数据平台进行的,中间也经历了比较曲折的过程。 每个行业都有自身的业务区别,不过很多还是比较相通的。 本文将全面讲解数仓建设规范,从数据模型规范,到数仓公共规范,数仓各…...
Springboot整合taos时序数据库TDengine
1.首先安装TDengine服务端在linux上 TDengine多种安装包的安装和卸载 - TDengine | 涛思数据安装过程直接去官网看,非常详细简单 2.出现的问题 windows连接 invalid app version 版本不对应 版本不对应的问题,需要在linux上安装的版本和windows client版本一致,不然w…...
Epoch、批量大小、迭代次数
梯度下降 它是 机器学习中使用的迭代 优化算法,用于找到最佳结果(曲线的最小值)。 坡度 是指 斜坡的倾斜度或倾斜度 梯度下降有一个称为 学习率的参数。 正如您在上图(左)中看到的,最初步长较大&#…...
qt-C++笔记之清空QVBoxLayout中的QCheckBox
qt-C笔记之清空QVBoxLayout中的QCheckBox QVBoxLayout 和 QCheckBox 是两个类,都是 PyQt/PySide 中用于创建图形用户界面 (GUI) 的工具。它们通常与 Qt 库一起使用,Qt 是一个流行的跨平台 GUI 库,可以用于创建桌面应用程序。 QVBoxLayout: Q…...
pc微信39223部分算法call偏移
WechatWin.dll 基址:78FD0000 MD5_Init_call 7AF48C80 | 56 | push esi | 7AF48C81 | 8B7424 08 | mov esi,dword ptr ss:[esp0x8] | 7AF48C85 | 6A 4C | push 0x4C …...
尚硅谷Flink(三)时间、窗口
1 🎰🎲🕹️ 🎰时间、窗口 🎲窗口 🕹️是啥 Flink 是一种流式计算引擎,主要是来处理无界数据流的,数据源源不断、无穷无尽。想要更加方便高效地处理无界流,一种方式就…...
MPLS基础
1. MPLS原理与配置 MPLS基础 (1)MPLS概念 MPLS位于TCP/IP协议栈中的数据链路层和网络层之间,可以向所有网络层提供服务。 通过在数据链路层和网络层之间增加额外的MPLS头部,基于MPLS头部实现数据快速转发。 本课程仅介绍MPLS在…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
深入理解 C++ 左值右值、std::move 与函数重载中的参数传递
在 C 编程中,左值和右值的概念以及std::move的使用,常常让开发者感到困惑。特别是在函数重载场景下,如何合理利用这些特性来优化代码性能、确保语义正确,更是一个值得深入探讨的话题。 在开始之前,先提出几个问题&…...
