当前位置: 首页 > news >正文

【网络协议】聊聊TCP如何做到可靠传输的

网络是不可靠的,所以在TCP协议中通过各种算法等机制保证数据传输的可靠性。生活中如何保证消息可靠传输的,那么就是采用一发一收的方式,但是这样其实效率并不高,所以通常采用的是累计确认或者累计应答。

如何实现一个靠谱的协议?

TCP为了保证顺序性,每个包都有一个ID,这个是建立连接之后开始使用的ID,一般确认包都是采用累计确认或者累计应答的模式。

发送端和接收端需要记录已经发送和处理确认的包的记录。
主要几种情况:

  • **已确认:**发送端已经发送,接收端已经确认。
  • **处理中:**发送端已经发送,接收端正在处理。
  • **等待发送:**发送端准备发情,接收到准备接收。
  • **没有发送:**发送端没有发送,接收端没有接收。

我们来聊聊为什么还要区分等待发送和没有发送这部分,本质其实为了控制接收端可以处理的数据能力。也就是滑动窗口大小就是接收端的,在TCP的保文中接收到会给发送端一个窗口的大小,暗示自己可以处理的数据。如果过多就处理不过来了。 Advertised window

发送端维护的数据结构:
在这里插入图片描述

  • LastByteAcked 已经确认的数据
  • LastByteSent 已发送但是还没有确认的。
  • LastByteAcked + AdvertisedWindow 接收端最大处理数据量

接收端维护的数据结构
在这里插入图片描述
MaxRcvBuffer:最大缓存的量
LastByteRead 已经接收,但是还没有被应用层读取的。
NextByteExpected 第一部分和第二部分的分界线

顺序问题与丢包问题

在这里插入图片描述
假设上面的1,2,3 发送端和接收端已经达成共识,但是 4 ,5发送端还没有接收到,可能丢包了。
接收端8,9已经接收,但是 6,7没有接收,6,7可能丢包了。这种情况其实丢包和顺序问题都出现了,如何解决。
对于丢包问题,采用的是确认与重发机制
也就是设置一定的时间,发送端对于每个发送的包,如果一定的时间没有ACK的话,那么就进行重新发送,这个时间不宜过长和过短,一般是往返时间RTT。但是RTT也是TCP会进行算出一个平均值。也就是自适应重传算法。Adaptive Retransmission Algorithm。

但是对于再次丢包的,TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会将下一次超时时间间隔设为先前值的两倍。两次超时,就说明网络环境差,不宜频繁反复发送

另一种快速重传的机制是,接收方收到一个大于下一个期望的报文段时,检测数据流中的一个间格。发送三个冗余的ACK,客户端收到后,就在定时器之前,重传丢失的报文端。

丢包问题采用的是确认机制,而顺序问题是通过序号确认的。

流量控制问题

流量控制其实在发送TCP报文的时候,就会携带一个窗口的大小。

在这里插入图片描述
会实时的根据接收方的数据大小进行调整,当接收方的处理增大是,发送方会增加可发送的数据,如果缩小,那么发送方就停止发送。
发送方会定时发送窗口探测数据包,看是否有机会调整窗口的大小。这个其实就是流量控制。

拥塞控制问题

流量控制是担心发送方把接收方缓存塞满,而拥塞控制是担心网络塞满。

LastByteSent - LastByteAcked <= min {cwnd, rwnd} ,是拥塞窗口和滑动窗口共同控制发送的速度。

水管有粗细,网络有带宽,也即每秒钟能够发送多少数据;水管有长度,端到端有时延。在理想状态下,水管里面水的量 = 水管粗细 x 水管长度。对于到网络上,通道的容量 = 带宽 × 往返延迟

TCP 的拥塞控制主要来避免两种现象,包丢失和超时重传
网络拥塞的判定?

  • 当网络发生拥塞时,路由器就会丢掉分组,因此,只要发送端没有按时收到应当到达的确认报文 ack,就可认为网络出现了拥塞

慢启动(2的N次增加)-拥塞避免(回退到一半窗口大小 +1操作) 当出现丢包 快速重传和快速恢复解决
在这里插入图片描述
快重传

  • 快重传算法规定:发送端只要一连收到三个重复 ack,即可断定有分组丢失,就应该立即重传丢失的报文,而不需要等待为该报文设置的重传计时器超时。
  • 与慢开始不同,拥塞窗口不设为 1,,而设为慢开始门限+3*mss(mss:最大报文段)。

在这里插入图片描述

流量控制和拥塞控制的理解吗?
流量控制考虑点对点的通信量的控制,也就是客户端和服务端直接数据传输数据量的大小。
拥塞控制考虑的问题是整个网络,是全局性的考虑。

小结

顺序、丢包、流量控制是通过滑动窗口来解决的。而拥塞控制是通过拥塞窗口来解决的,不能太快,也不能太慢,需要寻找到中间值。

相关文章:

【网络协议】聊聊TCP如何做到可靠传输的

网络是不可靠的&#xff0c;所以在TCP协议中通过各种算法等机制保证数据传输的可靠性。生活中如何保证消息可靠传输的&#xff0c;那么就是采用一发一收的方式&#xff0c;但是这样其实效率并不高&#xff0c;所以通常采用的是累计确认或者累计应答。 如何实现一个靠谱的协议&…...

记一次flask框架环境综合渗透测试

PART.01 登入过程 访问靶场地址http://101.43.22.226/?name2023&#xff0c;框架为Flask。 2. 测试存在ssti注入。 3. 直接执行以下命令。 http://101.43.22.226/?name{% for c in [].class.base.subclasses() %} {% if c.name ‘catch_warnings’ %} {% for b in c.i…...

博弈论学习笔记(2)——完全信息静态博弈

前言 这部分我们学习的是完全信息静态博弈&#xff0c;主要内容包括博弈论的基本概念、战略式博弈、Nash均衡、Nash均衡解的特性、以及Nash均衡的应用。 零、绪论 1、什么是博弈论 1&#xff09;博弈的定义 博弈论&#xff1a;研究决策主体的行为发生直接相互作用时候的决策…...

【COMP304 LEC4 LEC5】

LEC 4 1. Truth-Functionality Propositional logic 的connectives&#xff08;连接词&#xff09;are truth-functional 但是&#xff0c;有时候的描述不是true-functional的&#xff0c;比如&#xff1a;"Knowing that", "It is necessary that",&quo…...

表白墙(服务器)

目录 0.需求 1.创建Maven项目 2.给pom.xml内引入三个依赖 3.完善目录&#xff0c;并补充web.xml中的内容 4.编写代码 后端代码 ​编辑前端代码 5.引入数据库 创建message表 创建工具类 往MessageServlet类中添加方法 0.需求 前面写好了表白墙页面&#xff0c;但存…...

在 Mac 中卸载 Node.js

在 Mac 中卸载 Node.js&#xff0c;可以选择以下两种方法&#xff1a; 使用命令行卸载 Node.js 第一步&#xff1a;打开终端&#xff0c;输入以下命令显示 Node.js 的安装路径&#xff1a; which node 执行该命令后&#xff0c;会显示安装路径&#xff1a;/usr/local/bin/n…...

Hafnium构建选项及FVP模型调用

安全之安全(security)博客目录导读 目录 一、Hafnium构建选项 二、FVP模型调用 一、Hafnium构建选项 本节解释了在支持基于FF-A的SPM (SPMD位于EL3, SPMC位于S-EL1、S-EL2或EL3)的情况下进行构建时涉及的TF-A构建选项:...

第44天:前端及html、Http协议

前端 前端是所有跟用户直接打交道的都可以称之为是前端&#xff0c;比如&#xff1a;PC页面、手机页面、平板页面、汽车显示屏、大屏幕展示出来的都是前端内容。 前端的用处&#xff1a; 学了前端以后我们就可以做全栈工程师(会后端、会前端、会DB、会运维等),能够写一些简单的…...

shell_63.Linux产生信号

Linux 系统信号 信号 值 描述 1 SIGHUP 挂起&#xff08;hang up&#xff09;进程 2 SIGINT 中断&#xff08;interrupt&#xff09;进程 3 SIGQUIT 停止&#xff08;stop&#xff09;进程 9 …...

互联网摸鱼日报(2023-11-01)

互联网摸鱼日报(2023-11-01) 36氪新闻 毫末智行张凯&#xff1a;2023年高阶智能辅助驾驶市场迎来大爆发 ​撕开三星、金士顿市场&#xff0c;国产老牌存储器企业出海三年&#xff0c;营收翻三倍&#xff5c;insight全球 给医生一双“透视眼”&#xff0c;「锦瑟医疗」专注开…...

AR的光学原理?

AR智能眼镜的光学成像系统 AR眼镜的光学成像系统由微型显示屏和光学镜片组成&#xff0c;可以将其理解为智能手机的屏幕。 增强现实&#xff0c;从本质上说&#xff0c;是将设备生成的影像与现实世界进行叠加融合。这种技术基本就是通过光学镜片组件对微型显示屏幕发出的光线…...

语义分割 实例分割的异同点

语义分割和实例分割是计算机视觉领域中两个相关但不同的任务&#xff0c;它们都涉及对图像像素进行分类和标记&#xff0c;但关注的对象和目标有所不同。 目标对象&#xff1a; 语义分割&#xff1a;语义分割的目标是将图像中的每个像素标记为对应的语义类别&#xff0c;即将…...

C++学习初探---‘C++面向对象‘-继承函数重载与运算符重载

文章目录 前言继承继承是什么&#xff1f;三种访问权限的继承&#xff1a; 函数重载与运算符重载函数重载运算符重载可重载运算符&不可重载运算符 前言 第三次学习记录&#xff0c;依旧是C面向对象的内容。 继承 继承是什么&#xff1f; C中的继承是一种面向对象编程&am…...

Linux下搭建SRS服务器环境

搭建环境 Ubuntu的Linux环境srs 安装源码&#xff1a;源码地址为&#xff1a;GitHub - ossrs/srs at 3.0release 搭建步骤 下载srs源码 git clone GitHub - ossrs/srs: SRS is a simple, high-efficiency, real-time video server supporting RTMP, WebRTC, HLS, HTTP-FLV,…...

pytest 使用(一)

pytest 使用pytest&#xff0c;默认的测试用例的规则以及基础应用pytest测试用例的运行方式pytest执行测试用例的顺序是怎样的呢&#xff1f;如何分组执行&#xff08;冒烟&#xff0c;分模块执行&#xff0c;分接口和web执行&#xff09;pytest跳过测试用例 b站课程链接 使用…...

基于秃鹰算法的无人机航迹规划-附代码

基于秃鹰算法的无人机航迹规划 文章目录 基于秃鹰算法的无人机航迹规划1.秃鹰搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用秃鹰算法来优化无人机航迹规划。 1.秃鹰搜索算法 …...

08. 按键输入

08. 按键输入 按键原理图代码编写GPIO驱动代码按键驱动代码主函数 加上清除BSS段&#xff0c;代码不运行 按键原理图 按键KEY0连接到了UART1_CTS上。默认情况下&#xff0c;KEY0为高&#xff0c;当按下KEY0后&#xff0c;UART1_CTS为低电平 代码编写 在bsp下创建一个key和一个…...

YOLOv8-pose关键点检测:模型轻量化创新 |轻量高性能网络PPLCNet助力backbone

💡💡💡本文解决什么问题:轻量高性能网络PPLCNet替换YOLOv8 backbone PPLCNet | GFLOPs从9.6降低至6.6, mAP50从0.921下降至0.901,mAP50-95从0.697提升至0.752 Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html ✨✨✨手…...

大数据笔记-关于Cassandra的删除问题

Cassandra是Facebook开源的一个NoSQL数据库&#xff0c;它除了具备一般的NoSQL分布式数据库特点以外&#xff0c;最大的一个特点是去中心化架构设计&#xff0c;这和Hadoop HDFS/HBase等不一样&#xff0c;比如HDFS分为NameNode和DataNode&#xff0c;而Cassandra集群中所有节点…...

Qt自定义文件选择框

文章目录 前言一、头文件二、源文件三、qss文件四、效果 前言 在开发过程中,经常遇到使用文件选择框的情况,qt默认的文件选择框,样式可能与开发的桌面程序差异比较大.此时,我们可以自定义文件选择框,设置其样式,尽量做到样式统一. 一、头文件 #ifndef CUSTOMFILEDIALOG_H #d…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...