当前位置: 首页 > news >正文

import和require的区别

import是ES6标准中的模块化解决方案,require是node中遵循CommonJS规范的模块化解决方案。

后者支持动态引入,也就是require(${path}/xx.js),前者目前不支持,但是已有提案。

前者是关键词,后者不是。

前者是编译时加载,必须放在模块顶部,在性能上比后者好一些;后者是运行时加载,理论来说放在哪里都可以。

前者采用的是实时绑定方式,即导入和导出的值都指向同一个内存地址,所以导入的值会随着导出值变化;而后者在导出时是指拷贝,就算导出的值变化了,导入的值也不会变化,如果想要更新导入的值,就要重新导入。

前者会编译成require/exports来执行。

相关文章:

import和require的区别

import是ES6标准中的模块化解决方案,require是node中遵循CommonJS规范的模块化解决方案。 后者支持动态引入,也就是require(${path}/xx.js),前者目前不支持,但是已有提案。 前者是关键词,后者不是。 前者是编译时加…...

白骑士的Python教学高级篇 3.3 数据库编程

系列目录 上一篇:白骑士的Python教学高级篇 3.2 网络编程 SQL基础 Structured Query Language (SQL) 是一种用于管理和操作关系型数据库的标准语言。SQL能够执行各种操作,如创建、读取、更新和删除数据库中的数据(即CRUD操作)&a…...

macOS 安装redis

安装Redis在macOS上通常通过Homebrew进行,Homebrew是macOS上一个流行的包管理器。以下是安装Redis的步骤: 一 使用Homebrew安装Redis 1、安装Homebrew(如果尚未安装): 打开终端(Terminal)并执…...

【AIGC评测体系】大模型评测指标集

大模型评测指标集 (☆)SuperCLUE(1)SuperCLUE-V(中文原生多模态理解测评基准)(2)SuperCLUE-Auto(汽车大模型测评基准)(3)AIGVBench-T2…...

工厂模式之简单工厂模式

文章目录 工厂模式工厂模式分为工厂模式的角色简单工厂模式案例代码定义一个父类,三个子类定义简单工厂客户端使用输出结果 工厂模式 工厂模式属于创造型的模式,用于创建对象。 工厂模式分为 简单工厂模式:定义一个简单工厂类,根…...

2.(vue3.x+vite)调用iframe的方法(vue编码)

1、效果预览 2.编写代码 (1)主页面 <template><div><button @click="sendMessage">调用iframe,并发送信息...

实战项目——用Java实现图书管理系统

前言 首先既然是管理系统&#xff0c;那咱们就要实现以下这几个功能了--> 分析 1.首先是用户分为两种&#xff0c;一个是管理员&#xff0c;另一个是普通用户&#xff0c;既如此&#xff0c;可以定义一个用户类&#xff08;user&#xff09;&#xff0c;在定义管理员类&am…...

利用DeepFlow解决APISIX故障诊断中的方向偏差问题

概要&#xff1a;随着APISIX作为IT应用系统入口的普及&#xff0c;其故障定位能力的不足导致了在业务故障诊断中&#xff0c;APISIX常常成为首要的“嫌疑对象”。这不仅导致了“兴师动众”式的资源投入&#xff0c;还可能使诊断方向“背道而驰”&#xff0c;从而导致业务故障“…...

sqlalchemy获取数据条数

1、sqlalchemy获取数据条数 在SQLAlchemy中,你可以使用count()函数来获取数据表中的记录条数。 from sqlalchemy import create_engine, MetaData, Table# 数据库连接字符串 DATABASE_URI = dialect+driver://username:password@host:port/database# 创建引擎 engine = crea…...

SpringBoot的自动配置核心原理及拓展点

Spring Boot 的核心原理几个关键点 约定优于配置&#xff1a; Spring Boot 遵循约定优于配置的理念&#xff0c;通过预定义的约定&#xff0c;大大简化了 Spring 应用程序的配置和部署。例如&#xff0c;它自动配置了许多常见的开发任务&#xff08;如数据库连接、Web 服务器配…...

用随机森林算法进行的一次故障预测

本案例将带大家使用一份开源的S.M.A.R.T.数据集和机器学习中的随机森林算法&#xff0c;来训练一个硬盘故障预测模型&#xff0c;并测试效果。 实验目标 掌握使用机器学习方法训练模型的基本流程&#xff1b;掌握使用pandas做数据分析的基本方法&#xff1b;掌握使用scikit-l…...

24位DAC转换的FPGA设计及将其封装成自定义IP核的方法

在vivado设计中,为了方便的使用Block Desgin进行设计,可以使用vivado软件把自己编写的代码封装成IP核,封装后的IP核和原来的代码具有相同的功能。本文以实现24位DA转换(含并串转换,使用的数模转换器为CL4660)为例,介绍VIVADO封装IP核的方法及调用方法,以及DAC转换的详细…...

【大模型LLM面试合集】大语言模型基础_llm概念

1.llm概念 1.目前 主流的开源模型体系 有哪些&#xff1f; 目前主流的开源LLM&#xff08;语言模型&#xff09;模型体系包括以下几个&#xff1a; GPT&#xff08;Generative Pre-trained Transformer&#xff09;系列&#xff1a;由OpenAI发布的一系列基于Transformer架构…...

Qt时间日期处理与定时器使用总结

一、日期时间数据 1.QTime 用于存储和操作时间数据的类&#xff0c;其中包括小时(h)、分钟(m)、秒(s)、毫秒(ms)。函数定义如下&#xff1a; //注&#xff1a;秒(s)和毫秒(ms)有默认值0 QTime::QTime(int h, int m, int s 0, int ms 0) 若无须初始化时间数据&#xff0c;可…...

数据结构——Hash Map

1. Hash Map简介 Hash Map是一种基于键值对的数据结构&#xff0c;通过散列函数将键映射到存储位置&#xff0c;实现快速的数据查找和存储。它可以在常数时间内完成查找、插入和删除操作&#xff0c;因此在需要频繁进行这些操作时非常高效。 2. Hash Map的定义 散列表&#xff…...

剪画小程序:视频剪辑-视频播放倍数的调整与应用

在这个快节奏的时代&#xff0c;时间变得越来越宝贵&#xff0c;而视频倍数播放功能就像是我们的时间管理小助手&#xff0c;为我们的视频观看带来了极大的便利。你是否好奇它到底能在哪些地方发挥作用呢&#xff1f;让我们一起来看看&#xff01; 只要使用小程序【剪画】的里…...

使用 Java Swing 和 XChart 创建多种图表

在现代应用程序开发中&#xff0c;数据可视化是一个关键部分。本文将介绍如何使用 Java Swing 和 XChart 库创建各种类型的图表。XChart 是一个轻量级的图表库&#xff0c;支持多种类型的图表&#xff0c;非常适合在 Java 应用中进行快速的图表绘制。 1、环境配置 在开始之前&…...

信息系统运维管理:实践与发展

信息系统运维管理&#xff1a;实践与发展 信息系统运维管理在现代企业中扮演着至关重要的角色&#xff0c;确保信息系统的高效、安全和稳定运行。本文结合《信息系统运维管理》文档内容&#xff0c;探讨了服务设计阶段、服务转换阶段、委托系统维护管理三个主要章节&#xff0…...

html+js+css登录注册界面

拥有向服务器发送登录或注册数据并接收返回数据的功能 点赞关注 界面 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>Login and Registration Form</title> <style> * …...

英伟达(NVIDIA)数据中心GPU介绍

英伟达&#xff08;NVIDIA&#xff09;数据中心GPU按性能由高到低排行&#xff1a; 1. NVIDIA H100 架构&#xff1a;Hopper 核心数量&#xff1a;18352 CUDA Cores, 1456 Tensor Cores 显存&#xff1a;80 GB HBM3 峰值性能&#xff1a; 单精度&#xff08;FP32&#xff09…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

生信服务器 | 做生信为什么推荐使用Linux服务器?

原文链接&#xff1a;生信服务器 | 做生信为什么推荐使用Linux服务器&#xff1f; 一、 做生信为什么推荐使用服务器&#xff1f; 大家好&#xff0c;我是小杜。在做生信分析的同学&#xff0c;或是将接触学习生信分析的同学&#xff0c;<font style"color:rgb(53, 1…...