力扣中等难度热题——长度为K的子数组的能量值

目录
题目链接:3255. 长度为 K 的子数组的能量值 II - 力扣(LeetCode)
题目描述
示例
提示:
解法一:通过连续上升的长度判断
Java写法:
C++写法:
相比与Java写法的差别
运行时间
时间复杂度和空间复杂度
时间复杂度:
空间复杂度:
解法二:双指针+极限优化
优化前
Java写法:
优化前运行时间
优化后
优化的思路与实现:
Java写法:
C++写法:
优化分析:
运行时间
时间复杂度和空间复杂度
时间复杂度:
空间复杂度:
总结
解法一:通过连续上升的长度判断
解法二:双指针 + 极限优化
对比:

题目链接:3255. 长度为 K 的子数组的能量值 II - 力扣(LeetCode)
注:下述题目描述和示例均来自力扣
题目描述
给你一个长度为 n 的整数数组 nums 和一个正整数 k 。
一个数组的 能量值 定义为:
- 如果 所有 元素都是依次 连续 且 上升 的,那么能量值为 最大 的元素。
- 否则为 -1 。
你需要求出 nums 中所有长度为 k 的 子数组的能量值。
请你返回一个长度为 n - k + 1 的整数数组 results ,其中 results[i] 是子数组 nums[i..(i + k - 1)] 的能量值。
示例
示例 1:
输入:nums = [1,2,3,4,3,2,5], k = 3
输出:[3,4,-1,-1,-1]
解释:
nums 中总共有 5 个长度为 3 的子数组:
[1, 2, 3]中最大元素为 3 。[2, 3, 4]中最大元素为 4 。[3, 4, 3]中元素 不是 连续的。[4, 3, 2]中元素 不是 上升的。[3, 2, 5]中元素 不是 连续的。
示例 2:
输入:nums = [2,2,2,2,2], k = 4
输出:[-1,-1]
示例 3:
输入:nums = [3,2,3,2,3,2], k = 2
输出:[-1,3,-1,3,-1]
提示:
1 <= n == nums.length <=1 <= nums[i] <=1 <= k <= n

解法一:通过连续上升的长度判断
-
初始化:
ans数组用于存储每个长度为k的子数组的能量值,初始时设置所有值为-1,因为默认情况下每个子数组的能量值是-1。cnt用来记录当前子数组中连续上升的元素的个数。
-
遍历数组:
- 对于每个位置
i,我们检查nums[i]是否是连续上升序列的一部分。如果是,cnt增加 1;如果不是,cnt重置为 1。 - 如果当前连续上升的元素数
cnt达到k,则说明当前位置的子数组nums[i-k+1...i]满足连续上升条件,并且它的能量值是当前的最大值,即nums[i]。 - 然后将该子数组的能量值保存在
ans[i - k + 1]中。
- 对于每个位置
-
返回结果:
- 最后返回结果数组
ans,它包含每个长度为k的子数组的能量值。
- 最后返回结果数组
Java写法:
class Solution {public int[] resultsArray(int[] nums, int k) {// 获取数组长度int n = nums.length;// 初始化结果数组,默认值为 -1int[] res = new int[n - k + 1];// 初始化数组 res 所有元素为 -1Arrays.fill(res, -1); // upLen 用来记录当前连续上升序列的长度int upLen = 0;// 遍历数组for (int i = 0; i < n; i++) {// 判断当前位置 nums[i] 是否是连续上升序列的一部分// 如果是,upLen 增加 1;如果不是,upLen 重置为 1if(i == 0 || nums[i] - nums[i - 1] != 1){upLen = 1;}else{upLen++;}// 如果当前连续上升的元素个数达到 k,更新对应子数组的能量值if (upLen >= k) {// 将该子数组的能量值(即最大元素 nums[i])保存在 res 中res[i - k + 1] = nums[i];}}// 返回结果数组return res;}
}
C++写法:
#include <vector>
#include <algorithm> // for std::fillclass Solution {
public:std::vector<int> resultsArray(std::vector<int>& nums, int k) {// 获取数组长度int n = nums.size();// 初始化结果数组,默认值为 -1std::vector<int> res(n - k + 1, -1);// upLen 用来记录当前连续上升序列的长度int upLen = 0;// 遍历数组for (int i = 0; i < n; i++) {// 判断当前位置 nums[i] 是否是连续上升序列的一部分// 如果是,upLen 增加 1;如果不是,upLen 重置为 1if (i == 0 || nums[i] - nums[i - 1] != 1) {upLen = 1;} else {upLen++;}// 如果当前连续上升的元素个数达到 k,更新对应子数组的能量值if (upLen >= k) {// 将该子数组的能量值(即最大元素 nums[i])保存在 res 中res[i - k + 1] = nums[i];}}// 返回结果数组return res;}
};
相比与Java写法的差别
- vector:在 C++ 中,我们用
std::vector<int>来代替 Java 中的数组,vector是 C++ 中的动态数组容器。 - std::fill:在 Java 中,我们使用
Arrays.fill来填充数组,C++ 中对应的操作是std::fill,不过在这里我们直接在初始化vector时提供了默认值-1,因此不需要额外的std::fill。 - 数组大小:在 C++ 中,通过
nums.size()获取数组的大小,n - k + 1是结果数组的大小,表示有多少个长度为k的子数组。 - 逻辑保持一致:其余的逻辑完全保留 Java 中的思路,主要是遍历数组,判断每个子数组是否满足“递增”条件,并更新结果数组。
运行时间

时间复杂度和空间复杂度
时间复杂度:
-
遍历数组:
主要的操作是在遍历nums数组。遍历nums数组的时间复杂度是 O(n),其中n是数组的长度。 -
更新结果数组:
更新res[i - k + 1]的操作是常数时间操作 O(1)。每次更新时,我们只做简单的赋值操作。
因此,总的时间复杂度是 O(n),其中 n 是输入数组 nums 的长度。
空间复杂度:
-
结果数组:
需要一个大小为n - k + 1的数组res来存储最终结果。该数组的空间复杂度是 O(n - k + 1),即 O(n)(因为n - k + 1的量级与n相同,忽略常数项)。 -
其他变量:
除了结果数组,还使用了几个常数空间的变量(如upLen和i)。这些是常数空间 O(1)。
因此,总的空间复杂度是 O(n),因为主要的空间消耗来自结果数组 res。
![]() | ![]() |

解法二:双指针+极限优化
优化前
-
双指针定义:
left指针指向当前窗口的左边界,right指针指向当前窗口的右边界。- 初始时,
left = 0,right = k - 1,表示窗口包含了从nums[0]到nums[k-1]的元素。
-
滑动窗口:
- 每次通过右指针
right来扩展窗口,在窗口内用指针p来判断该子数组是否是一个连续的上升序列。 - 如果是连续的,结果数组
res[left]记录下该子数组的最大值(即nums[right])。 - 如果不是连续的,
res[left]标记为-1。
- 每次通过右指针
-
窗口后移:
- 每次判断完一个窗口后,左指针
left和右指针right都向右移动一位,继续判断下一个子数组。
- 每次判断完一个窗口后,左指针
Java写法:
class Solution {public int[] resultsArray(int[] nums, int k) {// k是大于1小于n的选手,我们直接诶采用双指针int left = 0;int right = k - 1;int n = nums.length;int[] res = new int[n - k + 1];// 1,2,3,4,3,2,5// l rwhile(right < n){int p = right;// 使用p指针判断区间是否为连续的boolean flag = true;while(flag && p > left){// 如果不是连续的直接结束并标记flagif(nums[p] - nums[p - 1] != 1){flag = false;break;}// 没事就继续往下判断p--;}if(flag){// 证明是连续的,放入最大值res[left] = nums[right];}else{// 否则标记为-1res[left] = -1;}// 窗口区间后移left++;right++;}return res;}
}
优化前运行时间

显然是没有通过的,那么我们就进入优化操作吧。

优化后
我采用了标记变量 isOK 和 oldRight 来控制和优化窗口的滑动逻辑。具体优化的地方主要在于减少大量不必要的判断和重复的计算。
优化的思路与实现:
-
isOK标志位:- 你引入了
isOK标志变量,用来判断当前的窗口是否满足是连续上升的状态。如果是连续的,就可以直接根据oldRight(即上一个窗口的右端)来判断是否继续。如果连续,就可以跳过一些不必要的计算,减少了重复的检查。
- 你引入了
-
oldRight的使用:oldRight用来记录上一个窗口右边界的元素值。当当前窗口的右边界的元素与oldRight连续时,直接跳过重复计算,直接赋值并移动窗口指针。
-
判断子数组是否是连续的:
- 当
nums[right] - nums[left] != k - 1时,直接返回-1,标记当前子数组不符合条件,减少了不必要的判断。
- 当
-
通过
flag判断连续性:- 内部的
while(flag)判断窗口内是否是连续上升的子数组,如果是连续的,就将最大值(即nums[right])保存到结果数组中。
- 内部的
Java写法:
class Solution {public int[] resultsArray(int[] nums, int k) {// k是大于1小于n的选手,我们直接诶采用双指针int left = 0;int right = k - 1;int n = nums.length;int[] res = new int[n - k + 1];boolean isOK = false;int oldRight = -1;// 1,2,3,4,3,2,5// l rwhile(right < n){if(isOK && nums[right] - oldRight == 1){res[left] = nums[right];// System.out.print("是我" + nums[right]);oldRight = nums[right];// 窗口区间后移left++;right++;continue;}oldRight = nums[right];int p = right;// 使用p指针判断区间是否为连续的boolean flag = true;if(nums[right] - nums[left] != k - 1){res[left] = -1;// 窗口区间后移left++;right++;isOK = false;continue;}while(flag && p > left){// 如果不是连续的直接结束并标记flagif(nums[p] - nums[p - 1] != 1){flag = false;break;}// 没事就继续往下判断p--;}if(flag){// 证明是连续的,放入最大值res[left] = nums[right];isOK = true;}else{isOK = false;// 否则标记为-1res[left] = -1;}// 窗口区间后移left++;right++;}return res;}
}
C++写法:
#include <vector>
using namespace std;class Solution {
public:vector<int> resultsArray(vector<int>& nums, int k) {int n = nums.size();vector<int> res(n - k + 1, -1); // 初始化结果数组,默认为-1int left = 0, right = k - 1;// 滑动窗口从左到右移动while (right < n) {int p = right;bool flag = true;// 判断当前窗口是否为连续的上升序列while (flag && p > left) {if (nums[p] - nums[p - 1] != 1) {flag = false;break;}p--;}if (flag) {// 如果是连续的,存储当前窗口的最大值,即 nums[right]res[left] = nums[right];} else {// 如果不是连续的,标记为-1res[left] = -1;}// 窗口后移left++;right++;}return res;}
};
优化分析:
-
减少重复计算:
- 通过
isOK标志位和oldRight变量,避免了对已满足条件的窗口的重复检查,提升了效率。
- 通过
-
减少无效窗口判断:
- 如果当前子数组不符合连续上升的条件(
nums[right] - nums[left] != k - 1),直接标记为-1,并跳过后续的连续性判断,减少了不必要的计算。
- 如果当前子数组不符合连续上升的条件(
-
提高效率:
- 通过引入
isOK标志,避免了对窗口中已满足条件部分的重复计算,提高了整体的处理速度。
- 通过引入
运行时间

时间复杂度和空间复杂度
时间复杂度:
- 外层
while (right < n):这个循环会遍历所有可能的窗口,每次窗口后移 1,最多运行n - k + 1次。 - 内层
while(flag && p > left):在最坏的情况下,内层循环最多会执行k - 1次(即窗口的最大长度)。因此,内层循环时间复杂度为 O(k)。
最终的时间复杂度是 O(n * k),和之前的复杂度相似。
空间复杂度:
- 主要空间消耗来自结果数组
res,其大小为n - k + 1,所以空间复杂度为 O(n - k + 1),即 O(n)。
![]() | ![]() |

总结
那么我们就成功的解决连续上升子数组能量值问题的两种解法,并提供了 Java 和 C++ 代码实现。问题要求对于一个数组 nums,找到每个长度为 k 的子数组是否是连续上升的,如果是,则记录该子数组的最大值,否则标记为 -1。
解法一:通过连续上升的长度判断
- 思路:遍历数组,用
upLen记录当前连续上升的元素个数。当upLen达到k时,记录该子数组的最大值到结果数组。 - 优点:简单,时间复杂度 O(n),空间复杂度 O(n)。
- 实现:使用 Java 和 C++ 语言实现,逻辑相同,使用
std::vector或数组来存储结果。
解法二:双指针 + 极限优化
- 思路:通过双指针
left和right滑动窗口来判断每个子数组是否是连续上升的。引入isOK标志和oldRight来优化判断,减少不必要的计算。 - 优化:通过提前判断连续性,避免重复计算,提升效率。若当前子数组不满足条件,直接标记为 -1,跳过后续计算。
- 时间复杂度:O(n * k),与解法一相似,但减少了重复判断。
- 空间复杂度:O(n),空间消耗主要来自结果数组。
对比:
- 解法一适合简单情况,容易实现,但效率较低。
- 解法二通过优化滑动窗口的判断,减少了不必要的计算,提升了效率,适用于更大的输入数据。

相关文章:
力扣中等难度热题——长度为K的子数组的能量值
目录 题目链接:3255. 长度为 K 的子数组的能量值 II - 力扣(LeetCode) 题目描述 示例 提示: 解法一:通过连续上升的长度判断 Java写法: C写法: 相比与Java写法的差别 运行时间 时间复杂…...
JSON格式
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人和机器阅读和解析。它基于JavaScript的对象表示法,但被广泛用于多种编程语言。 JSON中的数据类型 字符串(String):用双引…...
O-RAN前传Spilt Option 7-2x
Spilt Option 7-2x 下行比特处理上行比特处理相关文章: Open Fronthaul wrt ORAN 联盟被称为下层拆分(LLS),其目标是提高电信市场的灵活性和竞争力。下层拆分是指无线电单元(RU) 和分布式单元(DU) 之间的拆分。 O-RAN前传接口可以在 eCPRI 上传输。eCPR…...
【GeoJSON在线编辑平台】(2)吸附+删除+挖孔+扩展
前言 在上一篇的基础上继续开发,补充上吸附功能、删除矢量、挖孔功能。 实现 1. 吸附 参考官方案例:Snap Interaction 2. 删除 通过 removeFeature 直接移除选中的要素。 3. 挖孔 首先是引入 Turf.js ,然后通过 mask 方法来实现挖孔的…...
确定图像的熵和各向异性 Halcon entropy_gray 解析
1、图像的熵 1.1 介绍 图像熵(image entropy)是图像“繁忙”程度的估计值,它表示为图像灰度级集合的比特平均数,单位比特/像素,也描述了图像信源的平均信息量。熵指的是体系的混乱程度,对于图像而言&#…...
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...
算法通关(3) -- kmp算法
KMP算法的原理 从题目引出 有两个字符串s1和s2,判断s1字符串是否包含s2字符串,如果包含返回s1包含s2的最左开头位置,不包含返回-1,如果是按照暴力的方法去匹配,以s1的每个字符作为开头,用s2的整体去匹配,…...
5G网卡network connection: disconnected
日志 5G流程中没有报任何错误,但是重新拿地址了,感觉像是驱动层连接断开了,dmesg中日志如下: [ 1526.558377] ippassthrough:set [ ip10.108.40.47 mask27 ip_net10.108.40.32 router10.108.40.33 dns221.12.1.227 221.12.33.227] br-lan […...
微积分复习笔记 Calculus Volume 1 - 4.9 Newton’s Method
4.9 Newton’s Method - Calculus Volume 1 | OpenStax...
Flutter自定义矩形进度条实现详解
在Flutter应用开发中,进度条是一个常见的UI组件,用于展示任务的完成进度。本文将详细介绍如何实现一个支持动画效果的自定义矩形进度条。 功能特点 支持圆角矩形外观平滑的动画过渡效果可自定义渐变色可配置边框宽度和颜色支持进度更新动画 实现原理 …...
如何设置 TORCH_CUDA_ARCH_LIST 环境变量以优化 PyTorch 性能
引言 在深度学习领域,PyTorch 是一个广泛使用的框架,它允许开发者高效地构建和训练模型。为了充分利用你的 GPU 硬件,正确设置 TORCH_CUDA_ARCH_LIST 环境变量至关重要。这个变量告诉 PyTorch 在构建过程中应该针对哪些 CUDA 架构版本进行优…...
CSS的三个重点
目录 1.盒模型 (Box Model)2.位置 (position)3.布局 (Layout)4.低代码中的这些概念 在学习CSS时,有三个概念需要重点理解,分别是盒模型、定位、布局 1.盒模型 (Box Model) 定义: CSS 盒模型是指每个 HTML 元素在页面上被视为一个矩形盒子。…...
【笔记】前后端互通中前端登录无响应
后来的前情提要 : 后端的ip地址在本地测试阶段应该设置为localhost 前端中写cors的配置 后端也要写cors的配置 且两者的url都要为localhost 前端写的baseUrl是指定对应的后端的ip地址以及端口号 很重要 在本地时后端的IP的地址也必须为本地的 F12的网页报错是&a…...
AI引领PPT创作:迈向“免费”时代的新篇章?
AI引领PPT创作:迈向“免费”时代的新篇章? 在信息爆炸的时代,演示文稿(PPT)作为传递信息和展示观点的重要工具,其制作效率和质量直接关系到演讲者的信息传递效果。随着人工智能(AI)…...
HTB:Perfection[WriteUP]
目录 连接至HTB服务器并启动靶机 1.What version of OpenSSH is running? 使用nmap对靶机TCP端口进行开放扫描 2.What programming language is the web application written in? 使用浏览器访问靶机80端口页面,并通过Wappalyzer查看页面脚本语言 3.Which e…...
鸿蒙next打包流程
目录 下载团结引擎 添加开源鸿蒙打包支持 打包报错 路径问题 安装DevEcoStudio 可以在DevEcoStudio进行打包hap和app 包结构 没法直接用previewer运行 真机运行和测试需要配置签名,DevEcoStudio可以自动配置, 模拟器安装hap提示报错 安装成功,但无法打开 团结1.3版本新增工具…...
uni-app 实现自定义底部导航
原博:https://juejin.cn/post/7365533404790341651 在开发微信小程序,通常会使用uniapp自带的tabBar实现底部图标和导航,但现实有少量应用使用uniapp自带的tabBar无法满足需求,这时需要自定义底部tabBar功能。 例如下图的需求&am…...
Vue前端开发:animate.css第三方动画库
在实际的项目开发中,如果自定义元素的动画,不仅效率低下,代码量大,而且还存在浏览器的兼容性问题,因此,可以借助一些优秀的第三动画库来协助完成动画的效果,如animate.css和gsap动画库ÿ…...
Java中的I/O模型——BIO、NIO、AIO
1. BIO(Blocking I/O) 1. 1 BIO(Blocking I/O)模型概述 BIO,即“阻塞I/O”(Blocking I/O),是一种同步阻塞的I/O模式。它的主要特点是,当程序发起I/O请求(比如…...
【软考知识】敏捷开发与统一建模过程(RUP)
敏捷开发模式 概述敏捷开发的主要特点包括:敏捷开发的常见实践包括:敏捷开发的优势:敏捷开发的挑战:敏捷开发的方法论: ScrumScrum 的核心概念Scrum 的执行过程Scrum 的适用场景 极限编程(XP)核…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...


