当前位置: 首页 > news >正文

【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D

文章目录

  • 0. 前言
  • 1. PnP求解
    • 1.1 直接线性变换DLT
    • 1.2 P3P
    • 1.3 光束平差法BA
  • 2. 实现

0. 前言

透视n点(Perspective-n-Point,PnP)问题是计算机视觉领域的经典问题,用于求解3D-2D的点运动。换句话说,当知道 N N N个世界坐标系中3D空间点的坐标以及它们在图像上的投影点像素坐标时,可以使用PnP算法来估计相机在世界坐标系的姿态。P3P是最简化的PnP形式,即最少只需3个点即可估计当前的相机姿态(解不唯一)。

总体来说,PnP的求解方法有P3P、直接线性变换(Direct Linear Transformation,DLT)、EPnP(Efficient PnP)和UPnP等。此外,还有非线性优化解法,通过构建最小二乘问题并迭代求解,即万金油式的光束平差法(Bundle Adjustment,BA)

1. PnP求解

1.1 直接线性变换DLT

假设有世界坐标系中的3D点 P = [ X , Y , Z , 1 ] T P=[X, Y, Z, 1]^T P=[X,Y,Z,1]T,在图像 I 1 I_1 I1中对应的投影像素点为 x 1 = [ u 1 , v 1 , 1 ] T x_1=[u_1, v_1, 1]^T x1=[u1,v1,1]T,根据相机小孔成像模型有:

s [ u 1 v 1 1 ] = [ R ∣ t ] P = [ t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ] [ X Y Z 1 ] s \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}= \begin{bmatrix} R | t \end{bmatrix} P= \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ t_5 & t_6 & t_7 & t_8 \\ t_9 & t_{10} & t_{11} & t_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} s u1v11 =[Rt]P= t1t5t9t2t6t10t3t7t11t4t8t12 XYZ1

其中 s = Z s=Z s=Z,利用最后一行将其消去有:

{ s u 1 = t 1 X + t 2 Y + t 3 Z + t 4 s v 1 = t 5 X + t 6 Y + t 7 Z + t 8 s = t 9 X + t 10 Y + t 11 Z + t 12 ⇒ { u 1 = t 1 X + t 2 Y + t 3 Z + t 4 t 9 X + t 10 Y + t 11 Z + t 12 v 1 = t 5 X + t 6 Y + t 7 Z + t 8 t 9 X + t 10 Y + t 11 Z + t 12 \begin{cases} s u_1 = t_1 X + t_2 Y + t_3 Z + t_4\\ s v_1 = t_5 X + t_6 Y + t_7 Z + t_8\\ s = t_9 X + t_{10} Y + t_{11} Z + t_{12} \end{cases} \Rightarrow \begin{cases} u_1 = \frac{t_1 X + t_2 Y + t_3 Z + t_4}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ v_1 = \frac{t_5 X + t_6 Y + t_7 Z + t_8}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ \end{cases} \\ su1=t1X+t2Y+t3Z+t4sv1=t5X+t6

相关文章:

【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D

文章目录 0. 前言1. PnP求解1.1 直接线性变换DLT1.2 P3P1.3 光束平差法BA2. 实现0. 前言 透视n点(Perspective-n-Point,PnP)问题是计算机视觉领域的经典问题,用于求解3D-2D的点运动。换句话说,当知道 N N N个世界坐标系中3D空间点的坐标以及它们在图像上的投影点像素坐标…...

android 性能分析工具(04)Asan 内存检测工具

1 Asan工具简介 1.1 Asan工具历史背景 AddressSanitizer(ASan)最初由Google开发,并作为LLVM项目的一部分。ASan的设计目的是帮助开发者检测并修复内存错误,如堆栈和全局缓冲区溢出、使用已释放的内存等,这些问题可能…...

html中select标签的选项携带多个值

搜索参考资料&#xff1a;SELECT标签中的选项可以携带多个值吗&#xff1f; 【摘抄】&#xff1a; 它可能有一个select选项中的多个值&#xff0c;如下所示。 <select id"ddlEmployee" class"form-control"> <option value"">-- S…...

Lambda表达式如何进行调试

一、概述 Java8提供了lambda表达式&#xff0c;方便我们对数据集合进行操作&#xff0c;我们使用lambda表达式的时候&#xff0c;是不是有这样的疑问&#xff0c;如何对执行过程中的中间数据进行调试呢&#xff1f; 二、例子 在下面的例子中&#xff0c;我们实现随机最多生成…...

C++ —— 剑斩旧我 破茧成蝶—C++11

江河入海&#xff0c;知识涌动&#xff0c;这是我参与江海计划的第2篇。 目录 1. C11的发展历史 2. 列表初始化 2.1 C98传统的{} 2.2 C11中的{} 2.3 C11中的std::initializer_list 3. 右值引用和移动语义 3.1 左值和右值 3.2 左值引用和右值引用 3.3 引用延长生命周期…...

HTML5好看的音乐播放器多种风格(附源码)

文章目录 1.设计来源1.1 音乐播放器风格1效果1.2 音乐播放器风格2效果1.3 音乐播放器风格3效果1.4 音乐播放器风格4效果1.5 音乐播放器风格5效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板&#xff0c;程序开发&#xff0c;在线开发&#xff0c;在线沟通 作者&…...

C++设计模式行为模式———迭代器模式中介者模式

文章目录 一、引言二、中介者模式三、总结 一、引言 中介者模式是一种行为设计模式&#xff0c; 能让你减少对象之间混乱无序的依赖关系。 该模式会限制对象之间的直接交互&#xff0c; 迫使它们通过一个中介者对象进行合作。 中介者模式可以减少对象之间混乱无序的依赖关系&…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发十五,解码相关,将h264文件进行帧分隔变成avpacket

前提 前面我们学习了 将YUV数据读取到AVFrame&#xff0c;然后将AVFrame通过 h264编码器变成 AVPacket后&#xff0c;然后将avpacket直接存储到了本地就变成了h264文件。 这一节课&#xff0c;学习解码的一部分。我们需要将 本地存储的h264文件进行帧分隔&#xff0c;也就是变…...

力扣 LeetCode 104. 二叉树的最大深度(Day7:二叉树)

解题思路&#xff1a; 采用后序遍历 首先要区别好什么是高度&#xff0c;什么是深度 最大深度实际上就是根节点的高度 高度的求法是从下往上传&#xff0c;从下往上传实际上就是左右中&#xff08;后序遍历&#xff09; 深度的求法是从上往下去寻找 所以采用从下往上 本…...

如何高效实现汤臣倍健营销云数据集成到SQLServer

新版订单同步-&#xff08;Life-Space&#xff09;江油泰熙&#xff1a;汤臣倍健营销云数据集成到SQL Server 在企业信息化建设中&#xff0c;数据的高效集成和管理是提升业务运营效率的关键。本文将分享一个实际案例——如何通过新版订单同步方案&#xff0c;将汤臣倍健营销云…...

Vue3中使用:deep修改element-plus的样式无效怎么办?

前言&#xff1a;当我们用 vue3 :deep() 处理 elementui 中 el-dialog_body和el-dislog__header 的时候样式一直无法生效&#xff0c;遇到这种情况怎么办&#xff1f; 解决办法&#xff1a; 1.直接在 dialog 上面增加class 我试过&#xff0c;也不起作用&#xff0c;最后用这种…...

具身智能之Isaac Gym使用

0. 简介 Isaac Gym 是由 NVIDIA 提供的一个高性能仿真平台&#xff0c;专门用于大规模的机器人学习和强化学习&#xff08;RL&#xff09;任务。它结合了物理仿真、GPU加速、深度学习框架互操作性等特点&#xff0c;使得研究人员和开发者可以快速进行复杂的机器人仿真和训练。…...

【大数据学习 | Spark】spark-shell开发

spark的代码分为两种 本地代码在driver端直接解析执行没有后续 集群代码&#xff0c;会在driver端进行解析&#xff0c;然后让多个机器进行集群形式的执行计算 spark-shell --master spark://nn1:7077 --executor-cores 2 --executor-memory 2G sc.textFile("/home/ha…...

《Python制作动态爱心粒子特效》

一、实现思路 粒子效果&#xff1a; – 使用Pygame模拟粒子运动&#xff0c;粒子会以爱心的轨迹分布并运动。爱心公式&#xff1a; 爱心的数学公式&#xff1a; x16sin 3 (t),y13cos(t)−5cos(2t)−2cos(3t)−cos(4t) 参数 t t 的范围决定爱心形状。 动态效果&#xff1a; 粒子…...

Jmeter 如何导入证书并调用https请求

Jmeter 如何导入证书并调用https请求 通过SSL管理器添加证书文件 支持添加的文件为.p12&#xff0c;.pfx&#xff0c;.jks 如何将pem文件转换为pfx文件&#xff1f; 在公司内部通常会提供3个pem文件。 ca.pem&#xff1a;可以理解为是根证书&#xff0c;用于验证颁发的证…...

Python程序15个提速优化方法

目录 Python程序15个提速优化方法1. 引言2. 方法一&#xff1a;使用内建函数代码示例&#xff1a;解释&#xff1a; 3. 方法二&#xff1a;避免使用全局变量代码示例&#xff1a;解释&#xff1a; 4. 方法三&#xff1a;使用局部变量代码示例&#xff1a;解释&#xff1a; 5. 方…...

足球虚拟越位线技术FIFA OT(二)

足球虚拟越位线技术FIFA OT&#xff08;二&#xff09; 在FIFA认证测试过程中&#xff0c;留给VAR系统绘制越位线的时间只有90秒&#xff08;在比赛中时间可能更短&#xff09;&#xff0c;那么90秒内要做什么事呢&#xff0c;首先场地上球员做出踢球动作&#xff0c;然后VAR要…...

centos7.9单机版安装K8s

1.安装docker [rootlocalhost ~]# hostnamectl set-hostname master [rootlocalhost ~]# bash [rootmaster ~]# mv /etc/yum.repos.d/* /home [rootmaster ~]# curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo [rootmaster ~]# cu…...

图像编辑一些概念:Image Reconstruction与Image Re-generation

图像编辑本质上是在“图像重建”&#xff08;image reconstruction&#xff09;和“图像再生成”&#xff08;image re-generation&#xff09;之间寻找平衡。 1. Image Reconstruction&#xff08;图像重建&#xff09; 定义&#xff1a;图像重建通常是指从已有的图像中提取信…...

【STM32】在 STM32 USB 设备库添加新的设备类

说实话&#xff0c;我非常想吐槽 STM32 的 USB device library&#xff0c;总感觉很混乱。 USB Device library architecture 根据架构图&#xff1a; Adding a custom class 如果你想添加新的设备类&#xff0c;必须修改的文件有 usbd_desc.cusbd_conf.cusb_device.c 需要…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...