OpenAI 实战进阶教程 - 第一节:OpenAI API 架构与基础调用
目标
- 掌握 OpenAI API 的基础调用方法。
- 理解如何通过 API 进行内容生成。
- 使用实际应用场景帮助零基础读者理解 API 的基本用法。
一、什么是 OpenAI API?
OpenAI API 是一种工具,允许开发者通过编程方式与 OpenAI 的强大语言模型(例如 gpt-3.5-turbo
和 gpt-4
)进行交互。简单来说,它就像一个“AI助手”,可以回答问题、生成文本、总结信息等。
实际应用场景举例:
- **客户支持自动化:**根据用户问题生成自动回复。
- **内容创作:**生成文章段落或社交媒体内容。
- **数据分析报告:**从原始数据中生成分析总结。
二、API 核心概念
-
模型(model)
OpenAI 提供不同版本的模型,比如gpt-3.5-turbo
和gpt-4
。模型越高级,理解能力和生成效果越好。 -
Prompt(输入提示)
你想要 AI 生成什么内容?这是需要传给模型的提示信息,比如:- “请总结以下文本内容。”
- “生成一段关于气候变化的介绍。”
-
Temperature(随机性控制)
temperature=0
:生成结果更固定,适合生成准确答案。temperature=1
:生成内容更有创意,适合创作类任务。
-
max_tokens(内容长度控制)
限制返回结果的字数,避免输出过长内容。
三、基础代码示例与操作步骤
1. 环境准备
-
注册 OpenAI 账户并获取 API Key:
- OpenAI官网 注册账户。
- 进入“API Keys”页面创建一个新密钥,并保存下来。
-
安装 Python 和依赖库:
打开终端或命令行,运行:pip install openai
2. 实现简单 API 调用
以下代码展示了如何通过 Python 调用 OpenAI 生成文本:
import openai# 设置 API 密钥
openai.api_key = "your-api-key"# 发送请求,生成内容
response = openai.ChatCompletion.create(model="gpt-3.5-turbo",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Tell me about the benefits of Python programming."}],max_tokens=100,temperature=0.7
)# 打印生成的结果
print("Generated response:", response['choices'][0]['message']['content'])
3. 代码详细说明
openai.api_key
: 设置 API 密钥。ChatCompletion.create
: 调用 OpenAI 的聊天接口。messages
: 对话内容,包括用户输入 (user
) 和系统角色 (system
) 描述。max_tokens
: 限制返回内容的长度。temperature
: 控制内容的随机性。
4. 运行与验证
- 将代码保存为
openai_test.py
,运行:python openai_test.py
- 你将看到类似下面的输出:
Generated response: Python is a versatile programming language known for its simplicity...
四、实际应用案例
案例 1:生成简单工作总结
**需求场景:**某公司要求每天自动生成员工日报内容。
示例 Prompt:
{"role": "user", "content": "Generate a daily work report for a software developer."}
生成结果示例:
Today's Progress:
- Completed backend API integration.
- Fixed two major bugs related to user authentication.
- Participated in daily standup meetings.
案例 2:生成邮件回复
**需求场景:**客户支持部门希望自动生成邮件回复内容。
示例 Prompt:
{"role": "user", "content": "Write a polite response to a customer complaining about delivery delay."}
生成结果示例:
Dear Customer,
We sincerely apologize for the delay in delivering your order. We are actively working to resolve the issue...
五、常见错误与解决方法
-
无效 API Key 错误
- 错误提示:
Invalid API Key
- 解决方法: 确认
openai.api_key
是否正确设置。
- 错误提示:
-
超出速率限制
- 错误提示:
Rate Limit Exceeded
- 解决方法: 降低请求频率,或申请更高限额。
- 错误提示:
-
参数错误
- 错误提示:
Invalid Request
- 解决方法: 检查请求格式是否符合 OpenAI 文档规范。
- 错误提示:
小结
- 本节学习了 OpenAI API 的基础概念与调用方法。
- 通过 Python 示例展示了如何使用 API 生成内容。
- 提供了实际应用场景和常见错误解决方案。
练习题
-
修改请求内容:
- 将 Prompt 改为 “Explain the advantages of remote work.”,查看生成结果。
-
调整参数:
- 修改
temperature
为 0 和 1,观察生成内容的变化。
- 修改
-
实际案例尝试:
- 使用 Prompt “Generate a motivational quote for a daily newsletter.” 生成内容,并记录结果。
相关文章:

OpenAI 实战进阶教程 - 第一节:OpenAI API 架构与基础调用
目标 掌握 OpenAI API 的基础调用方法。理解如何通过 API 进行内容生成。使用实际应用场景帮助零基础读者理解 API 的基本用法。 一、什么是 OpenAI API? OpenAI API 是一种工具,允许开发者通过编程方式与 OpenAI 的强大语言模型(例如 gpt-…...

TensorFlow简单的线性回归任务
如何使用 TensorFlow 和 Keras 创建、训练并进行预测 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 8.完整代码 1. 数据准备与预处理 我们将使用一个简单的线性回归问题,其中输入特征 x 和标…...

【视频+图文详解】HTML基础4-html标签的基本使用
图文教程 html标签的基本使用 无序列表 作用:定义一个没有顺序的列表结构 由两个标签组成:<ul>以及<li>(两个标签都属于容器级标签,其中ul只能嵌套li标签,但li标签能嵌套任何标签,甚至ul标…...

在Arm芯片苹果Mac系统上通过homebrew安装多版本mysql并解决各种报错,感谢deepseek帮助解决部分问题
背景: 1.苹果设备上安装mysql,随着苹果芯片的推出,很多地方都变得不一样了。 2.很多时候为了老项目能运行,我们需要能安装mysql5.7或者mysql8.0或者mysql8.2.虽然本文编写时最新的默认mysql已经是9.2版本。 安装步骤 1.执行hom…...

c++可变参数详解
目录 引言 库的基本功能 va_start 宏: va_arg 宏 va_end 宏 va_copy 宏 使用 处理可变参数代码 C11可变参数模板 基本概念 sizeof... 运算符 包扩展 引言 在C编程中,处理不确定数量的参数是一个常见的需求。为了支持这种需求,C标准库提供了 &…...

【深度分析】DeepSeek 遭暴力破解,攻击 IP 均来自美国,造成影响有多大?有哪些好的防御措施?
技术铁幕下的暗战:当算力博弈演变为代码战争 一场针对中国AI独角兽的全球首例国家级密码爆破,揭开了数字时代技术博弈的残酷真相。DeepSeek服务器日志中持续跳动的美国IP地址,不仅是网络攻击的地理坐标,更是技术霸权对新兴挑战者的…...

CMake项目编译与开源项目目录结构
Cmake 使用简单方便,可以跨平台构建项目编译环境,尤其比直接写makefile简单,可以通过简单的Cmake生成负责的Makefile文件。 如果没有使用cmake进行编译,需要如下命令:(以muduo库echo服务器为例)…...

完全卸载mysql server步骤
1. 在控制面板中卸载mysql 2. 打开注册表,运行regedit, 删除mysql信息 HKEY_LOCAL_MACHINE-> SYSTEM->CurrentContolSet->Services->EventLog->Application->Mysql HKEY_LOCAL_MACHINE-> SYSTEM->CurrentContolSet->Services->Mysql …...

C#方法(练习)
1.定义一个函数,输入三个值,找出三个数中的最小值 2.定义一个函数,输入三个值,找出三个数中的最大值 3.定义一个函数,输入三个值,找出三个数中的平均值 4.定义一个函数,计算一个数的 N 次方 Pow(2, 3)返回8 5.传入十一…...

Unity游戏(Assault空对地打击)开发(3) 摄像机的控制
详细步骤 打开My Assets或者Package Manager。 选择Unity Registry。 搜索Cinemachine,找到 Cinemachine包,点击 Install按钮进行安装。 关闭窗口,新建一个FreeLook Camera,如下。 接着新建一个对象Pos,拖到Player下面…...

ChatGPT-4o和ChatGPT-4o mini的差异点
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式࿰…...

SQL进阶实战技巧:某芯片工厂设备任务排产调度分析 | 间隙分析技术应用
目录 0 技术定义与核心原理 1 场景描述 2 数据准备 3 间隙分析法 步骤1:原始时间线可视化...

【力扣】438.找到字符串中所有字母异位词
AC截图 题目 思路 我一开始是打算将窗口内的s子字符串和p字符串都重新排序,然后判断是否相等,再之后进行窗口滑动。不过缺点是会超时。 class Solution { public:vector<int> findAnagrams(string s, string p) {vector<int> vec;if(s.siz…...

2024具身智能模型汇总:从训练数据、动作预测、训练方法到Robotics VLM、VLA
前言 本文一开始是属于此文《GRAPE——RLAIF微调VLA模型:通过偏好对齐提升机器人策略的泛化能力》的前言内容之一(该文发布于23年12月底),但考虑到其重要性,加之那么大一张表格 看下来 阅读体验较差,故抽出取来独立成文且拆分之 …...

Day33【AI思考】-函数求导过程 的优质工具和网站
文章目录 **函数求导过程** 的优质工具和网站**一、动态图形工具**1. **Desmos(网页端)**2. **GeoGebra(全平台)** **二、分步推导工具**3. **Wolfram Alpha(网页/App)**4. **Symbolab(网页/App…...

【URL】一个简单基于Gym的2D随机游走环境,用于无监督强化学习(URL)
import gym from gym import spaces import numpy as np import pygameclass RandomWalk2DEnv(gym.Env):def __init__(self):super(RandomWalk2DEnv, self).__init__()# 定义状态空间为2D坐标(x, y)self.x_min, self.x_max -10, 10 # 更新尺寸为 (-10,…...

【VM】VirtualBox安装ubuntu22.04虚拟机
阅读本文之前,请先根据 安装virtualbox 教程安装virtulbox虚拟机软件。 1.下载Ubuntu系统镜像 打开阿里云的镜像站点:https://developer.aliyun.com/mirror/ 找到如图所示位置,选择Ubuntu 22.04.3(destop-amd64)系统 Ubuntu 22.04.3(desto…...

MySQL的GROUP BY与COUNT()函数的使用问题
在MySQL中,GROUP BY和 COUNT()函数是数据聚合查询中非常重要的工具。正确使用它们可以有效地统计和分析数据。然而,不当的使用可能会导致查询结果不准确或性能低下。本文将详细讨论 GROUP BY和 COUNT()函数的使用方法及常见问题,并提供相应的…...

C# 精炼题18道题(类,三木运算,Switch,计算器)
1.数组元素和 2.数组元素乘积 3.数组元素平均数 4.数组中最大值 5.数组中的偶数 6.数组中的阶乘 7.数组反转 8.字符串反转 9.回文字符串 10.检查回文 11.最小最大值 12.找素数 13.字符串中的最长无重复字符串 14.字符串去重 15.数组中计算两数之和 16.数字到字符…...

96,【4】 buuctf web [BJDCTF2020]EzPHP
进入靶场 查看源代码 GFXEIM3YFZYGQ4A 一看就是编码后的 1nD3x.php 访问 得到源代码 <?php // 高亮显示当前 PHP 文件的源代码,用于调试或展示代码结构 highlight_file(__FILE__); // 关闭所有 PHP 错误报告,防止错误信息泄露可能的安全漏洞 erro…...

数据库 - Sqlserver - SQLEXPRESS、由Windows认证改为SQL Server Express认证进行连接 (sa登录)
本文讲SqlServer Express版本在登录的时候, 如何由Windows认证,修改为Sql Server Express认证。 目录 1,SqlServer Express的Windows认证 2,修改为混合认证 3,启用sa 用户 4,用sa 用户登录 下面是详细…...

2025年02月02日Github流行趋势
项目名称:oumi 项目地址url:https://github.com/oumi-ai/oumi 项目语言:Python 历史star数:1416 今日star数:205 项目维护者:xrdaukar, oelachqar, taenin, wizeng23, kaisopos 项目简介:构建最…...

【数据分析】案例03:当当网近30日热销图书的数据采集与可视化分析(scrapy+openpyxl+matplotlib)
当当网近30日热销图书的数据采集与可视化分析(scrapy+openpyxl+matplotlib) 当当网近30日热销书籍官网写在前面 实验目的:实现当当网近30日热销图书的数据采集与可视化分析。 电脑系统:Windows 使用软件:Visual Studio Code Python版本:python 3.12.4 技术需求:scrapy、…...

如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?
我使用DeepSeek AI和Dexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中,我将逐步指导您如何构建像我一样的机器人。 DeepSeek 最近发布了R1,这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本,但增加…...

buu-jarvisoj_level0-好久不见30
嘶,我咋觉得这个也是栈溢出呢,找到读取的值,在再找到后门函数...
深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
一、梯度消失 梯度消失的根本原因在于 激活函数的性质和链式法则的计算: 激活函数的导数很小: 常见的激活函数(例如 Sigmoid 和 Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid 的输出趋于 0 或 1…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.2 多维数组切片:跨步访问与内存布局
2.2 多维数组切片:跨步访问与内存布局 目录/提纲 #mermaid-svg-FbBIOMVivQfdX2LJ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-FbBIOMVivQfdX2LJ .error-icon{fill:#552222;}#mermaid-svg-FbBIOMVivQ…...

ResNet--深度学习中的革命性网络架构
一、引言 在深度学习的研究和应用中,网络架构的设计始终是一个关键话题。随着计算能力和大数据的不断提升,深度神经网络逐渐成为解决复杂任务的主流方法。然而,随着网络层数的增加,训练深度神经网络往往面临梯度消失或梯度爆炸的…...

TypeScript语言的语法糖
TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言,它在JavaScript的基础上添加了一些强类型的特性,使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中,不仅包含了静态类型、接口、枚举等强大的特性&…...

17.2 图形绘制4
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 17.2.5 线条样式 C#为画笔绘制线段提供了多种样式:一是线帽(包括起点和终点处)样式;…...